题目内容

14.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x+3,x>0}\\{{x}^{2}-4x+3,x≤0}\end{array}\right.$,不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是(  )
A.(-∞,-2)B.(-∞,0)C.(0,2)D.(-2,0)

分析 根据二次函数的单调性容易判断出函数f(x)在R上单调递减,所以根据题意得到x+a<2a-x,即2x<a在[a,a+1]上恒成立,所以只需满足2(a+1)<a,解该不等式即得实数a的取值范围

解答 解:当x>0时,f(x)=-x2-2x+3=-(x+1)2+4此时函数f(x)单调递减,
∵不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立
∴x+a<2a-x恒成立,
即a>2x恒成立,
∵x∈[a,a+1],
∴(2x)max=2(a+1)=2a+2,
即a>2a+2,
解得a<-2,
当x≤0时,f(x)=x2-4x+3=(x-2)2-1此时函数f(x)单调递减,
∵不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立
∴x+a<2a-x恒成立,
即a>2x恒成立,
∵x∈[a,a+1],
∴(2x)max=2(a+1)=2a+2,
即a>2a+2,
解得a<-2,
综上所述:即实数a的取值范围是(-∞,-2).
故选:A

点评 考查二次函数的对称轴,二次函数的单调性,以及分段函数单调性的判断方法,函数单调性定义的运用,以及一次函数的单调性.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网