题目内容
2.已知定义在R上的函数f(x)的导函数为f′(x),对任意x∈R恒有f(x)>f′(x),a=3f(ln2),b=2f(ln3),则有( )A. | a>b | B. | a=b | ||
C. | a<b | D. | a,b大小关系不能判断 |
分析 构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,利用导数可判断g(x)的单调性,由单调性可得g(ln2)与g(ln3)的大小关系,整理即可得到答案.
解答 解:解:令g(x)=$\frac{f(x)}{{e}^{x}}$,则g′(x)=$\frac{{f}^{′}(x)•{e}^{x}-f(x)•{e}^{x}}{{e}^{2x}}$=$\frac{{f}^{′}(x)-f(x)}{{e}^{x}}$,
因为对任意x∈R都有f(x)>f′(x),
所以g′(x)<0,即g(x)在R上单调递减,
又ln2<ln3,所以g(ln2)>g(ln3),即$\frac{f(ln2)}{{e}^{ln2}}$>$\frac{f(ln3)}{{e}^{ln3}}$,
所以$\frac{f(ln2)}{2}$>$\frac{f(ln3)}{3}$,即3f(ln2)>2f(ln3),
即a>b,
故选;A
点评 本题考查导数的运算及利用导数研究函数的单调性,属中档题,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性.
练习册系列答案
相关题目
6.某厂大量生产一种小零件,经抽样检验知道其次品率是1%,现把这种零件中6件装成一盒,那么该盒中恰好含一件次品的概率是( )
A. | ($\frac{99}{100}$)2 | B. | 0.01 | ||
C. | C${\;}_{6}^{1}$$\frac{1}{100}$•(1-$\frac{1}{100}$)5 | D. | C${\;}_{6}^{2}$($\frac{1}{100}$)2•(1-$\frac{1}{100}$)4 |
14.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x+3,x>0}\\{{x}^{2}-4x+3,x≤0}\end{array}\right.$,不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是( )
A. | (-∞,-2) | B. | (-∞,0) | C. | (0,2) | D. | (-2,0) |
11.已知集合A={x|y=ln(x2-x)},B={x|x2-9≤0},则A∩B=( )
A. | [-3,0]∪[1,3] | B. | [-3,0)∪(1,3] | C. | (0,1) | D. | [-3,3] |
12.定义在R上的非常值函数f(x)满足y=f(x+1)和y=f(x-1)都是奇函数,则函数y=f(x)一定是( )
A. | 偶函数 | B. | 奇函数 | ||
C. | 周期函数 | D. | 以上结论都不正确 |