题目内容
17.设离散型随机变量X的概率分布如表:则随机变量X的数学期望为( )X | 0 | 1 | 2 | 3 |
Pi | $\frac{1}{6}$ | $\frac{1}{3}$ | $\frac{1}{6}$ | p |
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{7}{6}$ |
分析 先求出p的值,再根据数学期望公式代入计算即可.
解答 解:∵P=1-($\frac{1}{6}$+$\frac{1}{3}$+$\frac{1}{6}$)=$\frac{1}{3}$,
∴E(X)=0×$\frac{1}{6}$+1×$\frac{1}{3}$+2×$\frac{1}{6}$+3×$\frac{1}{3}$=$\frac{5}{3}$,
故选:C.
点评 本题考查了数学期望的求法,关键是掌握公式,属于基础题.
练习册系列答案
相关题目
2.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=bx+a;
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{a=\widehat{y}-b\overline{x}}\end{array}\right.$.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=bx+a;
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{a=\widehat{y}-b\overline{x}}\end{array}\right.$.
9.某电脑公司有6名产品推销员,其中5名的工作年限与年推销金额数据如表:
(1)求年推销金额Y关于工作年限x的线性回归方程;
(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.
(参考公式:$\widehat{b}$═$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=-$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{y}$)
推销员编号 | 1 | 2 | 3 | 4 | 5 |
工作年限x/年 | 3 | 5 | 6 | 7 | 9 |
推销金额Y/万元 | 2 | 3 | 3 | 4 | 5 |
(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.
(参考公式:$\widehat{b}$═$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=-$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{y}$)
7.已知a,b,c∈R,且a>b,ab≠0,则下列不等式一定成立的是( )
A. | a3>b3 | B. | ac2>bc2 | C. | $\frac{1}{a}<\frac{1}{b}$ | D. | a2>b2 |