题目内容
6.已知:x∈R,a=x2-1,b=4x+5.求证:a,b中至少有一个不小于0.分析 假设 a<0,b<0,则a+b<0,又a+b=x2-1+4x+5=x2+4x+4=(x+2)2≥0,这与假设所得结论矛盾,故假设不成立.
解答 证明:假设a,b都小于0,即a<0,b<0,则a+b<0.
又a+b=x2-1+4x+5=x2+4x+4=(x+2)2≥0,
这与假设所得a+b<0矛盾,故假设不成立.
∴a,b中至少有一个不小于0.
点评 本题考查用反证法证明数学命题,推出矛盾是解题的关键.
练习册系列答案
相关题目
16.已知直线l1:x+2y-5=0,l2:2x+y+2=0,则直线l1与直线l2及x轴所围成的三角形的面积是( )
A. | 12 | B. | 18 | C. | 24 | D. | 30 |
17.设离散型随机变量X的概率分布如表:则随机变量X的数学期望为( )
X | 0 | 1 | 2 | 3 |
Pi | $\frac{1}{6}$ | $\frac{1}{3}$ | $\frac{1}{6}$ | p |
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{7}{6}$ |
11.已知函数y=f(x)是R上的奇函数,且x>0时,f(x)=lg(x),若g(x)=sinπx,则函数y=f(x-2)与y=g(x)图象所有公共点的横坐标之和为( )
A. | 10 | B. | 12 | C. | 20 | D. | 22 |
15.不等式$\frac{{x}^{2}+2x+2}{x+2}$>1的解集是( )
A. | (-2,-1)∪(0,∞) | B. | (-∞,-1)∪(0,+∞) | C. | (0,+∞) | D. | (-2,-1) |
16.在某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如下表:
对变量t与y进行相关性检验,得知t与y之间具有线性相关关系.
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)预测该地区2016年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\hat b=\frac{{\sum_{i=1}^n{({t_i}-\bar\overline{t})({y_i}-\bar\overline{y})}}}{{\sum_{i=1}^n{{{({t_i}-\bar\overline{t})}^2}}}}$,$\hat a=\bar\overline{y}-\hat b\bar\overline{t}$.
年 份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)预测该地区2016年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\hat b=\frac{{\sum_{i=1}^n{({t_i}-\bar\overline{t})({y_i}-\bar\overline{y})}}}{{\sum_{i=1}^n{{{({t_i}-\bar\overline{t})}^2}}}}$,$\hat a=\bar\overline{y}-\hat b\bar\overline{t}$.