ÌâÄ¿ÄÚÈÝ
12£®Ä³¿Æ¼¼¹«Ë¾×éÖ¯¼¼ÊõÈËÔ±½øÐÐÐÂÏîÄ¿Ñз¢£¬¼¼ÊõÈËÔ±½«¶ÀÁ¢µØ½øÐÐÏîÄ¿Öв»Í¬ÀàÐ͵ÄʵÑéA£¬B£¬C£¬ÈôA£¬B£¬CʵÑé³É¹¦µÄ¸ÅÂÊ·Ö±ðΪ $\frac{4}{5}$£¬$\frac{3}{4}$£¬$\frac{2}{3}$£®£¨1£©¶ÔA£¬B£¬CʵÑé¸÷½øÐÐÒ»´Î£¬ÇóÖÁÉÙÓÐÒ»´ÎʵÑé³É¹¦µÄ¸ÅÂÊ£»
£¨2¸ÃÏîÄ¿ÒªÇóʵÑéA£¬B¸÷×öÁ½´Î£¬ÊµÑéC×ö3´Î£¬Èç¹ûAʵÑéÁ½´Î¶¼³É¹¦Ôò½øÐÐʵÑéB²¢»ñ½±Àø10000Ôª£¬Á½´ÎBʵÑ鶼³É¹¦Ôò½øÐÐʵÑéC²¢»ñ½±Àø30000Ôª£¬3´ÎCʵÑéÖ»ÒªÓÐÁ½´Î³É¹¦£¬ÔòÏîÄ¿Ñз¢³É¹¦²¢»ñ½±Àø60000Ôª£¨²»Öظ´µÃ½±£©£¬ÇÒÿ´ÎʵÑéÏ໥¶ÀÁ¢£¬ÓÃX±íʾ¼¼ÊõÈËÔ±Ëù»ñ½±ÀøµÄÊýÖµ£¬Ð´³öXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
·ÖÎö £¨1£©ÓÉÏ໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʼ°¶ÔÁ¢Ê¼þµÄ¸ÅÂʼÆË㹫ʽÇóµÃ´ð°¸£»
£¨2£©·Ö±ðÇó³öXµÄȡֵΪ0£¬10000£¬30000£¬60000µÄ¸ÅÂÊ£¬ÁгöƵÂÊ·Ö²¼±í£¬´úÈëÆÚÍû¹«Ê½µÃ´ð°¸£®
½â´ð ½â£º£¨1£©ÉèA£¬B£¬CʵÑé³É¹¦·Ö±ð¼ÇΪʼþA£¬B£¬C£¬ÇÒÏ໥¶ÀÁ¢£¬
A£¬B£¬CÖÁÉÙÓÐÒ»´ÎʵÑé³É¹¦ÎªÊ¼þD£¬
ÔòP£¨D£©=1-P£¨$\overline{A}\overline{B}\overline{C}$£©=1-P£¨$\overline{A}$£©£¨$\overline{B}$£©£¨$\overline{C}$£©=1-$\frac{1}{5}¡Á\frac{1}{4}¡Á\frac{1}{3}=\frac{59}{60}$£»
£¨2£©XµÄȡֵΪ0£¬10000£¬30000£¬60000£¬
ÔòP£¨X=0£©=$\frac{1}{5}+\frac{4}{5}¡Á\frac{1}{5}=\frac{9}{25}$£¬
P£¨X=10000£©=$£¨\frac{4}{5}£©^{2}£¨\frac{1}{4}+\frac{3}{4}¡Á\frac{1}{4}£©=\frac{7}{25}$£¬
P£¨X=30000£©=$£¨\frac{4}{5}£©^{2}£¨\frac{3}{4}£©^{2}[1-£¨\frac{2}{3}£©^{2}-{C}_{2}^{1}£¨\frac{2}{3}£©^{2}¡Á\frac{1}{3}]=\frac{7}{75}$
P£¨X=60000£©=$£¨\frac{4}{5}£©^{2}£¨\frac{3}{4}£©^{2}[£¨\frac{2}{3}£©^{2}+{C}_{2}^{1}£¨\frac{2}{3}£©^{2}¡Á\frac{1}{3}]=\frac{4}{15}$£®
¡àXµÄ·Ö²¼ÁÐΪ
X | 0 | 10000 | 30000 | 60000 |
P | $\frac{9}{25}$ | $\frac{7}{25}$ | $\frac{7}{75}$ | $\frac{4}{15}$ |
µãÆÀ ±¾Ì⿼²éÁËÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûµÄÓ¦Óã¬ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍû±íÕ÷ÁËËæ»ú±äÁ¿È¡ÖµµÄƽ¾ùÖµ£¬¹Ø¼üÊǶÔÌâÒâµÄÀí½â£¬ÊÇÖеµÌ⣮
x1 | 2 | 3 | 4 | 5 | 6 |
y1 | 2.5 | 4 | 5 | 6 | 7.5 |
£¨2£©µ±Ê¹ÓÃÄê·ÝΪ9Äêʱ£¬ÊÔ¹À¼Æ·µ³§ËùÐèÒªÖ§³öµÄ·ÑÓÃÊǶàÉÙ£¿
£¨ÔÚÏßÐԻع鷽³Ì$\widehat{y}$=$\widehat{b}$x$\widehat{a}$ÖУ¬$\widehat{b}$=$\frac{\underset{\stackrel{n}{¡Æ}}{n+1}{x}_{1}{y}_{1}-n\widehat{x}\widehat{y}}{\underset{\stackrel{n}{¡Æ}}{n-1}{x}_{1}^{2}-n\widehat{x}}$£¬$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x£¬$\widehat{x}$£¬$\widehat{y}$ΪÑù±¾Æ½¾ùÖµ£©
Êýѧ³É¼¨ÅÅÃûx | 8 | 20 | 16 | 24 | 30 | 22 |
ÎïÀí³É¼¨ÅÅÃûy | 13 | 18 | 22 | 22 | 24 | 21 |
£¨2£©Èô¸ÃѧÉúµÄÎïÀí³É¼¨yÓëÊýѧ³É¼¨xÖ®¼ä¾ßÓÐÏßÐÔÏà¹Ø¹Øϵ£¬²¢Í¨¹ý×îС¶þ³Ë·¨ÔÀí¼ÆËãµÃµ½»Ø¹é·½³ÌΪ$\stackrel{¡Ä}{y}$=0.45x+$\stackrel{¡Ä}{a}$£¬ÏÖÖªËûÔÚÆÚÄ©¿¼ÊÔÖÐËûµÄÊýѧ³É¼¨Ä꼶ÅÅÃûµÚ40Ãû£¬ÊÔ¹À¼ÆËûµÄÎïÀí³É¼¨Ä꼶ÅÅÃû£®
ÆøΣ¨¡æ£© | 14 | 12 | 8 | 6 |
ÓõçÁ¿ | 22 | 26 | 34 | 38 |
£¨2£©ÓÉ£¨1£©µÄ·½³ÌÔ¤²âÆøÎÂΪ5¡æʱ£¬ÓõçÁ¿µÄ¶ÈÊý£®
²Î¿¼¹«Ê½£º$\begin{array}{l}b=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x}£©£¨{y_i}-\overline y£©}}{{\sum_{i=1}^n{£¨{x_i}-\overline x}{£©^2}}}=\frac{{\sum_{i=1}^n{x_i}{y_i}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\\ \overline a=\overline y-b\overline x\end{array}$£®
X | 0 | 1 | 2 | 3 |
Pi | $\frac{1}{6}$ | $\frac{1}{3}$ | $\frac{1}{6}$ | p |
A£® | $\frac{2}{3}$ | B£® | $\frac{4}{3}$ | C£® | $\frac{5}{3}$ | D£® | $\frac{7}{6}$ |
A£® | $\frac{1}{10}$i | B£® | $\frac{1}{10}$ | C£® | $\frac{7}{10}$ | D£® | $\frac{7}{10}$i |