题目内容
5.下列命题中,正确的命题个数( )①用相关系数r来判断两个变量的相关性时,r越接近0,说明两个变量有较强的相关性;
②将一组数据中的每个数据都加上同一个常数后,方差恒不变;
③设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,
则P(-1<ξ≤0)=$\frac{1}{2}$-p;
④回归直线一定过样本点的中心($\overline{x}$,$\overline{y}$).
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 ①两个变量之间的相关系数,r的绝对值越接近于1,表示两个变量的线性相关性越强,r的绝对值越接近于0,表示两个变量之间几乎不存在线性相关;②根据方差公式可知方差恒不变;③根据正态分布N(0,1)的密度函数的图象对称性可得,P(-1<ξ<0)=P(0<ξ<1);④根据线性回归方程可知回归直线一定过样本点的中心($\overline{x}$,$\overline{y}$),由此可得结论.
解答 解:①错误,r越接近0,说明两个变量有较弱的相关性;
②正确,据公式易知,将一组数据中的每个数据都加上同一个常数后,方差不变,一般地,E(aξ+b)=aEξ+b,D(aξ+b)=a2Dξ(a,b为常数);
③正确,据正态分布的对称性易得P(-1<ξ≤0)=$\frac{1-2P?ξ>1?}{2}$=$\frac{1}{2}$-p;
④正确,回归直线一定过样本点的中心($\overline{x}$,$\overline{y}$).
综上可知共有3个正确命题,
故选:C.
点评 本题考查线性回归方程,考查正态分布,考查方差,明确概念,正确计算是关键.
练习册系列答案
相关题目
15.在△ABC中,D为BC边中点,O为△ABC内一点,且$\overrightarrow{OC}$=2$\overrightarrow{AO}$+$\overrightarrow{BO}$,则$\frac{{S}_{△AOC}}{{S}_{△BOD}}$=( )
A. | $\frac{5}{3}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 1 |
16.已知直线l1:x+2y-5=0,l2:2x+y+2=0,则直线l1与直线l2及x轴所围成的三角形的面积是( )
A. | 12 | B. | 18 | C. | 24 | D. | 30 |
20.为分析某一位同学在高一学年里的学习状态,现对他在高一六次测试的数学成绩年级排名x和物理成绩年级排名y进行了统计,如表:
(1)试分析该同学数学和物理成绩那科更加稳定?并证明你的结论?
(2)若该学生的物理成绩y与数学成绩x之间具有线性相关关系,并通过最小二乘法原理计算得到回归方程为$\stackrel{∧}{y}$=0.45x+$\stackrel{∧}{a}$,现知他在期末考试中他的数学成绩年级排名第40名,试估计他的物理成绩年级排名.
数学成绩排名x | 8 | 20 | 16 | 24 | 30 | 22 |
物理成绩排名y | 13 | 18 | 22 | 22 | 24 | 21 |
(2)若该学生的物理成绩y与数学成绩x之间具有线性相关关系,并通过最小二乘法原理计算得到回归方程为$\stackrel{∧}{y}$=0.45x+$\stackrel{∧}{a}$,现知他在期末考试中他的数学成绩年级排名第40名,试估计他的物理成绩年级排名.
17.设离散型随机变量X的概率分布如表:则随机变量X的数学期望为( )
X | 0 | 1 | 2 | 3 |
Pi | $\frac{1}{6}$ | $\frac{1}{3}$ | $\frac{1}{6}$ | p |
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{7}{6}$ |
15.不等式$\frac{{x}^{2}+2x+2}{x+2}$>1的解集是( )
A. | (-2,-1)∪(0,∞) | B. | (-∞,-1)∪(0,+∞) | C. | (0,+∞) | D. | (-2,-1) |