题目内容
9.某电脑公司有6名产品推销员,其中5名的工作年限与年推销金额数据如表:推销员编号 | 1 | 2 | 3 | 4 | 5 |
工作年限x/年 | 3 | 5 | 6 | 7 | 9 |
推销金额Y/万元 | 2 | 3 | 3 | 4 | 5 |
(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.
(参考公式:$\widehat{b}$═$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=-$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{y}$)
分析 (1)首先求出x,y的平均数,利用最小二乘法做出b的值,再利用样本中心点满足线性回归方程和前面做出的横标和纵标的平均值,求出a的值,写出线性回归方程.
(2)第6名推销员的工作年限为11年,即当x=11时,把自变量的值代入线性回归方程,得到y的预报值,即估计出第6名推销员的年推销金额为5.9万元.
解答 解:(1)由题意,$\overline{x}$=6,$\overline{y}$=3.4
则$\widehat{b}$=$\frac{10}{20}$=0.5,a=3.4-3=0.4.
所以年推销金额Y关于工作年限x的线性回归方程为$\widehat{Y}$=0.5x+0.4.
(2)当x=11时,$\widehat{y}$=0.5x+0.4=0.5×11+0.4=5.9(万元).
所以可以估计第6名推销员的年推销金额为5.9万元.
点评 本题考查回归分析的初步应用,考查利用最小二乘法求线性回归方程,是一个综合题目.
练习册系列答案
相关题目
19.一台使用的时间较长的机器,按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
(1)如果y对x线性相关,且回归直线方程y=0.7286x-a,依据表中数据求a的值;
(2)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(精确到0.0001)
参考公式:$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.$.
转速x(转/秒) | 16 | 14 | 12 | 8 |
每小时生产有缺点的零件数y件) | 11 | 9 | 8 | 5 |
(2)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(精确到0.0001)
参考公式:$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.$.
20.为分析某一位同学在高一学年里的学习状态,现对他在高一六次测试的数学成绩年级排名x和物理成绩年级排名y进行了统计,如表:
(1)试分析该同学数学和物理成绩那科更加稳定?并证明你的结论?
(2)若该学生的物理成绩y与数学成绩x之间具有线性相关关系,并通过最小二乘法原理计算得到回归方程为$\stackrel{∧}{y}$=0.45x+$\stackrel{∧}{a}$,现知他在期末考试中他的数学成绩年级排名第40名,试估计他的物理成绩年级排名.
数学成绩排名x | 8 | 20 | 16 | 24 | 30 | 22 |
物理成绩排名y | 13 | 18 | 22 | 22 | 24 | 21 |
(2)若该学生的物理成绩y与数学成绩x之间具有线性相关关系,并通过最小二乘法原理计算得到回归方程为$\stackrel{∧}{y}$=0.45x+$\stackrel{∧}{a}$,现知他在期末考试中他的数学成绩年级排名第40名,试估计他的物理成绩年级排名.
17.设离散型随机变量X的概率分布如表:则随机变量X的数学期望为( )
X | 0 | 1 | 2 | 3 |
Pi | $\frac{1}{6}$ | $\frac{1}{3}$ | $\frac{1}{6}$ | p |
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{7}{6}$ |
4.已知复数z=$\frac{1+2i}{3-i}$(i是虚数单位),则复数z的虚部是( )
A. | $\frac{1}{10}$i | B. | $\frac{1}{10}$ | C. | $\frac{7}{10}$ | D. | $\frac{7}{10}$i |
19.集合A={x∈N|0<x<4}的真子集个数为( )
A. | 3 | B. | 4 | C. | 7 | D. | 8 |