题目内容
【题目】某省级示范高中高三年级对考试的评价指标中,有“难度系数”“区分度”和“综合”三个指标,其中,难度系数,区分度,综合指标.以下是高三年级 6 次考试的统计数据:
i | 1 | 2 | 3 | 4 | 5 | 6 |
难度系数 xi | 0.66 | 0.72 | 0.73 | 0.77 | 0.78 | 0.84 |
区分度 yi | 0.19 | 0.24 | 0.23 | 0.23 | 0.21 | 0.16 |
(I) 计算相关系数,若,则认为与的相关性强;通过计算相关系数 ,能否认为与的相关性很强(结果保留两位小数)?
(II) 根据经验,当时,区分度与难度系数的相关性较强,从以上数据中剔除(0.7,0.8)以外的 值,即.
(i) 写出剩下 4 组数据的线性回归方程(保留两位小数);
(ii) 假设当时, 与的关系依从(i)中的回归方程,当 为何值时,综合指标的值最大?
参考数据:
参考公式:
相关系数
回归方程中斜率和截距的最小二乘估计公式为
【答案】(1)不能认为(2),
【解析】
(I)根据表格中数据及平均数公式可得,
由,可得结果;(II)(i)由(I)可知样本中心点的坐标,从而求可得公式中所需数据,求出,再结合样本中心点的性质可得,进而可得关于的回归方程; (ii)
,利用二次函数的性质可得结果.
(I)易求得,
因为,所以不能认为 与的相关性很强
(II)(i)由题意,剔除后,求得,
则,
故所求线性回归方程为:
(ii)
,
故当时,取最大值
练习册系列答案
相关题目