题目内容
【题目】已知函数(其中).
(1)当时,判断零点的个数k;
(2)在(1)的条件下,记这些零点分别为,求证: .
【答案】(1)见解析;(2)见解析.
【解析】试题分析:(1)先求导数,再求导函数零点,根据零点列表分析导函数符号,进而确定函数单调性,再根据零点存在定理确定函数零点个数,(2)先根据零点条件化简得,令则,利用导数研究函数单调性,根据单调性得,即证得结论.
试题解析:(1)由题知x>0, ,
所以,由得,
当x>时, , 为增函数;当0<x<时, , 为减函数,
所以,
而,
所以当时, 零点的个数为2.
(2)由(1)知的两个零点为,不妨设,
于是且
两式相减得(*), 令,
则将代入(*)得,进而,
所以,
下面证明,其中,
即证明,设,
则,令,则,
所以为增函数,即为增函数,
故,所以为减函数,
于是,即.
所以有,从而.
【题目】一只红铃虫的产卵数和温度有关,现收集了6组观测数据如下表:
温度 | 21 | 24 | 25 | 27 | 29 | 32 |
产卵数/个 | 7 | 11 | 21 | 24 | 66 | 115 |
1.946 | 2.398 | 3.045 | 3.178 | 4.191 | 4.745 |
(I)以温度为23、25、27、29的数据分别建立:①和之间线性回归方程,②和之间线性回归方程;
(Ⅱ)若以(Ⅰ)所得回归方程预测,得到温度为21、32的数据如下:
温度 | 21 | 32 |
-11.5 | 80.94 | |
1.825 | 4.857 |
试以上表数据说明①②两个模型,哪个拟合的效果更好.
参考数据:
【题目】某省级示范高中高三年级对考试的评价指标中,有“难度系数”“区分度”和“综合”三个指标,其中,难度系数,区分度,综合指标.以下是高三年级 6 次考试的统计数据:
i | 1 | 2 | 3 | 4 | 5 | 6 |
难度系数 xi | 0.66 | 0.72 | 0.73 | 0.77 | 0.78 | 0.84 |
区分度 yi | 0.19 | 0.24 | 0.23 | 0.23 | 0.21 | 0.16 |
(I) 计算相关系数,若,则认为与的相关性强;通过计算相关系数 ,能否认为与的相关性很强(结果保留两位小数)?
(II) 根据经验,当时,区分度与难度系数的相关性较强,从以上数据中剔除(0.7,0.8)以外的 值,即.
(i) 写出剩下 4 组数据的线性回归方程(保留两位小数);
(ii) 假设当时, 与的关系依从(i)中的回归方程,当 为何值时,综合指标的值最大?
参考数据:
参考公式:
相关系数
回归方程中斜率和截距的最小二乘估计公式为