题目内容

【题目】已知袋中装有大小相同的2个白球、2个红球和1个黄球.一项游戏规定:每个白球、红球和黄球的分值分别是0分、1分和2分,每一局从袋中一次性取出三个球,将3个球对应的分值相加后称为该局的得分,计算完得分后将球放回袋中.当出现第局得分()的情况就算游戏过关,同时游戏结束,若四局过后仍未过关,游戏也结束.

(1)求在一局游戏中得3分的概率;

(2)求游戏结束时局数的分布列和数学期望.

【答案】(1)(2)

【解析】试题分析:(1)在一局游戏中得3分只有白球、红球和黄球各1个,根据组合知识可得总事件数为,白球、红球和黄球各1个事件数为,最后根据古典概型概率公式求概率,(2)先确定随机变量可能取法:1,2,3,4.再求对应事件概率: 对应两白一红; 对应在不成立条件下第二次得分为2分,即第二次对应一黄二白或一白二红,其它同理,列出表格得分布列,最后根据数学期望公式求期望.

试题解析:解:(1)设在一局游戏中得3分为事件

.

答:在一局游戏中得3分的概率为.

(2)的所有可能取值为1,2,3,4.

在一局游戏中得2分的概率为

.

所以

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网