题目内容
【题目】已知函数在点处取得极值.
(1)求的值;
(2)若有极大值,求在上的最小值.
【答案】(1) ;(2) .
【解析】试题分析:(1) 函数在点处取得极值 ,则 , ,列方程组解出a,b的值即可;(2)对函数求导判断单调性,求出函数的极大值,由极大值可求出c的值,代回解析式,根据单调性求出函数在上的最小值.
试题解析:
(1)因f(x)=ax3+bx+c,故f′(x)=3ax2+b,
由于f(x)在点x=2处取得极值c-16,
故有,
即化简得,
解得a=1,b=-12.
(2)由(1)知f(x)=x3-12x+c;
f′(x)=3x2-12=3(x-2)(x+2).
令f′(x)=0,得x1=-2,x2=2.
当x∈(-∞,-2)时,f′(x)>0,故f(x)在(-∞,-2)上为增函数;
当x∈(-2,2)时,f′(x)<0,故f(x)在(-2,2)上为减函数;
当x∈(2,+∞)时,f′(x)>0,
故f(x)在(2,+∞)上为增函数.
由此可知f(x)在x1=-2处取得极大值f(-2)=16+c,f(x)在x1=2处取得极小值f(2)=c-16.
由题设条件知16+c=28得c=12.
此时f(-3)=9+c=21,f(3)=-9+c=3,
f(2)=-16+c=-4,
因此f(x)在[-3,3]上的最小值为f(2)=-4.
点睛: 函数的导数与极值点的关系:(1)定义域上的可导函数在处取得极值的充要条件是,并且在两侧异号,若左负右正为极小值点,若左正右负为极大值点;(2)函数在点处取得极值时,它在这点的导数不一定存在,例如函数,结合图象,知它在处有极小值,但它在处的导数不存在;(3) 既不是函数在处取得极值的充分条件也不是必要条件.最后一定要注意对极值点进行检验.
练习册系列答案
相关题目