题目内容
5.已知椭圆$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的两个焦点分别为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$,直线$y=\sqrt{2}$过椭圆的焦点,点P是椭圆上位于第一象限的点,并满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=1$,过P作倾斜角互补的两条直线PA,PB分别交椭圆于A,B两点.(1)求椭圆方程和点P坐标;
(2)求证直线AB的倾斜角为定值.
分析 (1)通过直线$y=\sqrt{2}$过椭圆的焦点可知c=$\sqrt{2}$,结合e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$计算可知a=2、b2=a2-c2=2,进而可得椭圆方程,通过设点P(x,2$\sqrt{1-\frac{{x}^{2}}{2}}$),利用$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=1$计算即得结论;
(2)通过(1)可知P(1,$\sqrt{2}$),通过设直线PA的方程为x=m(y-$\sqrt{2}$)+1、则直线PB的方程为x=-m(y-$\sqrt{2}$)+1,并分别与椭圆方程联立计算可知点A、B的坐标,进而计算可得结论.
解答 (1)解:∵直线$y=\sqrt{2}$过椭圆的焦点,
∴焦点坐标为F1(0,$\sqrt{2}$),
∴c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{2}$,
又∵e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
∴a=2,b2=a2-c2=4-2=2,
∴椭圆方程为:$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{2}=1$,
依题意,设点P(x,2$\sqrt{1-\frac{{x}^{2}}{2}}$),
∵$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=1$,
∴(x,2$\sqrt{1-\frac{{x}^{2}}{2}}$-$\sqrt{2}$)•(x,2$\sqrt{1-\frac{{x}^{2}}{2}}$+$\sqrt{2}$)=1,
整理得:x2=1,
∴P(1,$\sqrt{2}$);
(2)证明:由(1)可知P(1,$\sqrt{2}$),
依题意设直线PA的方程为:x=m(y-$\sqrt{2}$)+1,
则直线PB的方程为:x=-m(y-$\sqrt{2}$)+1,
联立$\left\{\begin{array}{l}{x=m(y-\sqrt{2})+1}\\{2{x}^{2}+{y}^{2}-4=0}\end{array}\right.$,消去x整理得:
(1+2m2)y2+4m$(1-\sqrt{2}m)$y+4m2-$4\sqrt{2}m$-2=0,
∵yA+$\sqrt{2}$=$\frac{4m(\sqrt{2}m-1)}{1+2{m}^{2}}$,
∴yA=$\frac{4m(\sqrt{2}m-1)}{1+2{m}^{2}}$-$\sqrt{2}$,
∴xA=m[$\frac{4m(\sqrt{2}m-1)}{1+2{m}^{2}}$-2$\sqrt{2}$]+1,
联立$\left\{\begin{array}{l}{x=-m(y-\sqrt{2})+1}\\{2{x}^{2}+{y}^{2}-4=0}\end{array}\right.$,消去x整理得:
(1+2m2)y2-4m$(1+\sqrt{2}m)$y+4m2+$4\sqrt{2}m$-2=0,
∵yB+$\sqrt{2}$=$\frac{4m(1+\sqrt{2}m)}{1+2{m}^{2}}$,
∴yB=$\frac{4m(1+\sqrt{2}m)}{1+2{m}^{2}}$-$\sqrt{2}$,
∴xB=-m[$\frac{4m(1+\sqrt{2}m)}{1+2{m}^{2}}$-2$\sqrt{2}$]+1,
∴kAB=$\frac{{y}_{A}-{y}_{B}}{{x}_{A}-{x}_{B}}$=$\frac{\sqrt{2}}{2}$,
∴直线AB的倾斜角为定值.
点评 本题是一道直线与圆锥曲线的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.
A. | $\frac{12}{5}$ | B. | $\frac{5}{12}$ | C. | $\frac{6}{5}$ | D. | -2 |
A. | (-4,-1)∪(1,4) | B. | (-∞,4)∪(-1,0) | C. | (-∞,-4)∪(4,+∞) | D. | (-∞,-4)∪(-1,0)∪(1,4) |