题目内容

【题目】已知f(x+y)=f(x)+f(y)且f(1)=2,则f(1)+f(2)+…+f(n)不能等于(
A.f(1)+2f(1)+…+nf(1)
B.f(
C.n(n+1)
D.n(n+1)f(1)

【答案】D
【解析】解:令x=n,y=1,得f(n+1)=f(n)+f(1)=f(n)+2, ∴f(n+1)﹣f(n)=2,
可得{f(n)}构成以f(1)=2为首项,公差为2的等差数列,
∴f(n)=2+(n﹣1)×2=2n,
因此,f(1)+f(2)+…+f(n)= = =n(n+1)
对于A,由于f(1)+2f(1)+3f(1)+…+nf(1)
=f(1)(1+2+…+n)=2× =n(n+1),故A正确;
对于B,由于f(n)=2n,所以f[ ]=2× =n(n+1),得B正确;
对于C,与求出的前n项和的通项一模一样,故C正确.
对于D,由于n(n+1)f(1)=2n(n+1),故D不正确.
故选:D

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网