题目内容
【题目】某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200.220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图示. (Ⅰ)求直方图中x的值;
(Ⅱ)求月平均用电量的众数和中位数;
(Ⅲ)在月平均用电量为[220,240),[240,260),[260,280)的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在[220,240)的用户中应抽取多少户?
【答案】解:(Ⅰ)由直方图的性质,可得 (0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1
得:x=0.0075,所以直方图中x的值是0.0075.
(Ⅱ)月平均用电量的众数是 =230.
因为(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,
设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5
得:a=224,所以月平均用电量的中位数是224
(Ⅲ)月平均用电量为[220,240]的用户有0.0125×20×100=25户,
月平均用电量为[240,260)的用户有0.0075×20×100=15户,
月平均用电量为[260,280)的用户有0.005×20×100=10户,
抽取比例= = ,
所以月平均用电量在[220,240)的用户中应抽取25× =5户
【解析】(Ⅰ)由直方图的性质能求出直方图中x的值.(Ⅱ)由频率分布直方图能求出月平均用电量的众数和中位数.(Ⅲ)月平均用电量为[220,240]的用户有25户,月平均用电量为[240,260)的用户有15户,月平均用电量为[260,280)的用户有10户,由此能求出月平均用电量在[220,240)的用户中应抽取的户数.
【考点精析】通过灵活运用频率分布直方图,掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息即可以解答此题.
【题目】已知f(x+y)=f(x)+f(y)且f(1)=2,则f(1)+f(2)+…+f(n)不能等于( )
A.f(1)+2f(1)+…+nf(1)
B.f( )
C.n(n+1)
D.n(n+1)f(1)
【题目】某校高三某班的一次测试成绩的频率分布表以及频率分布直方图中的部分数据如下,请根据此解答如下问题:
(1)求班级的总人数;
(2)将频率分布表及频率分布直方图的空余位置补充完整;
(3)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100)之间的概率.
分组 | 频数 | 频率 |
[50,60) | 0.08 | |
[60,70) | 7 | |
[70,80) | 10 | |
[80,90) | ||
[90,100) | 2 |