题目内容

【题目】已知数列{an}的前n项和为Sn , 且Sn=2n2+n,n∈N* , 数列{bn}满足an=4log2bn+3,n∈N*
(1)求an , bn
(2)求数列{anbn}的前n项和Tn

【答案】
(1)解:由Sn=2n2+n可得,当n=1时,a1=s1=3

当n≥2时,an=sn﹣sn1=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1

而n=1,a1=4﹣1=3适合上式,

故an=4n﹣1,

又∵an=4log2bn+3=4n﹣1


(2)解:由(Ⅰ)知,

2Tn=3×2+7×22+…+(4n﹣5)2n1+(4n﹣1)2n

=(4n﹣1)2n

=(4n﹣1)2n﹣[3+4(2n﹣2)]=(4n﹣5)2n+5


【解析】(Ⅰ)由Sn=2n2+n可得,当n=1时,可求a1=3,当n≥2时,由an=sn﹣sn1可求通项,进而可求bn(Ⅱ)由(Ⅰ)知, ,利用错位相减可求数列的和
【考点精析】关于本题考查的等差关系的确定和等比关系的确定,需要了解如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即=d ,(n≥2,n∈N)那么这个数列就叫做等差数列;等比数列可以通过定义法、中项法、通项公式法、前n项和法进行判断才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网