题目内容
5.已知定义在实数集R的函数f(x)满足f(1)=4,且f(x)导函数f′(x)<3,则不等式f(lnx)>3lnx+1的解集为( )A. | (1,+∞) | B. | (e,+∞) | C. | (0,1) | D. | (0,e) |
分析 构造函数g(x)=f(x)-2x-1,求函数的导数,判断函数的单调性 即可得到结论
解答 解:设t=lnx,
则不等式f(lnx)>3lnx+1等价为f(t)>3t+1,
设g(x)=f(x)-3x-1,
则g′(x)=f′(x)-3,
∵f(x)的导函数f′(x)<3,
∴g′(x)=f′(x)-3<0,此时函数单调递减,
∵f(1)=4,
∴g(1)=f(1)-3-1=0,
则当x<1时,g(x)>g(1)=0,
即g(x)<0,则此时g(x)=f(x)-3x-1>0,
即不等式f(x)>3x+1的解为x<1,
即f(t)>3t+1的解为t<1,
由lnx<1,解得0<x<e,
即不等式f(lnx)>3lnx+1的解集为(0,e),
故选:D.
点评 本题主要考查不等式的求解,根据条件构造函数,利用函数的单调性和导数之间的关系是解决本题的关键,属于中档题.
练习册系列答案
相关题目
15.若(2x+$\sqrt{3}$)100=a0+a1x+a2x2+…+a100x100,则(a0+a2+a4+…+a100)2-(a1+a3+a5+…+a99)2的值为( )
A. | 1 | B. | -1 | C. | 0 | D. | 2 |
16.若向量$\overrightarrow a,\overrightarrow b$满足:$|\overrightarrow a|=1$,$(\overrightarrow a+\overrightarrow b)⊥\overrightarrow a$,$(2\overrightarrow a+\overrightarrow b)⊥\overrightarrow b$,则$|\overrightarrow b|$=( )
A. | 2 | B. | $\sqrt{2}$ | C. | 1 | D. | $\frac{{\sqrt{2}}}{2}$ |
10.已知x=lnπ,y=log${\;}_{\frac{1}{2}}$π,z=e${\;}^{-\frac{1}{2}}$,则( )
A. | x<y<z | B. | z<x<y | C. | z<y<x | D. | y<z<x |
17.计算$\int_0^2{\frac{x}{2}dx}$=( )
A. | 1 | B. | 2 | C. | 3 | D. | 4 |