题目内容
11.已知正数x,y满足$\left\{\begin{array}{l}{2x-y≤0}\\{x-3y+5≥0}\end{array}\right.$,则z=-2x-y的最小值为( )A. | -5 | B. | 5 | C. | 4 | D. | -4 |
分析 首先画出平面区域,然后根据z的几何意义求最小值.
解答 解:由已知正数x,y满足$\left\{\begin{array}{l}{2x-y≤0}\\{x-3y+5≥0}\end{array}\right.$,对应的区域如图
解$\left\{\begin{array}{l}{2x-y=0}\\{x-3y+5=0}\end{array}\right.$得A(1,2)
当直线z=-2x-y经过A时最小为-2-2=-4.
故选D.
点评 本题考查了简单线性规划问题;一般步骤是画出约束条件对应的区域,根据目标函数的几何意义求最值;体现了数形结合的思想.
练习册系列答案
相关题目
4.利用计算器算出自变量和函数值的对应值如表,则方程2x-x2=0的一个根所在区间为(1.8,2.2).
x | 0.2 | 0.6 | 1.0 | 1.4 | 1.8 | 2.2 | 2.6 | 3.0 | 3.4 | … |
y=2x | 1.149 | 1.516 | 2.0 | 2.639 | 3.482 | 4.595 | 6.063 | 8.0 | 10.556 | … |
y=x2 | 0.04 | 0.36 | 1.0 | 1.96 | 3.24 | 4.84 | 6.76 | 9.0 | 11.56 | … |
6.已知{an}为等差数列,若a1+a9=$\frac{π}{3}$,则cos(a3+a7)的值为( )
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
19.为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取100名学生,其中男生喜欢数学课程的20人,不喜欢数学课程的30人;女生喜欢数学课程的10人,不喜欢数学课程的40人.
(Ⅰ)根据以上数据作2×2列联表;(答案填写在答题纸上)
(Ⅱ)根据以上数据,能否有95%的把握认为“高中生的性别与是否喜欢数学课程有关”?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+b)(b+d)}$.
(Ⅰ)根据以上数据作2×2列联表;(答案填写在答题纸上)
喜欢数学课程 | 不喜欢数学课程 | 合计 | |
男生 | |||
女生 | |||
合计 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |