题目内容

1.己知点列An(xn,0)满足:$\overrightarrow{{A_0}{A_n}}•\overrightarrow{{A_1}{A_{n+1}}}$=a-1其中n∈N*,又已知x0=-1,x1=1,
(1)若a=0,数列xn的通项公式(n∈N*);
(2)若a=2,点$B(\sqrt{2},0)$,记an=|BAn|(n∈N*),且{an}的前n项和为Sn,求证:Sn<$\frac{{4\sqrt{2}-2}}{7}$.

分析 (1)利用向量数量积运算可得(xn+1)(xn+1-1)=-1,变形$\frac{1}{{x}_{n+1}}-\frac{1}{{x}_{n}}$=1,再利用等差数列的通项公式即可得出.
(2)当a=2时,由$\overrightarrow{{A_0}{A_n}}•\overrightarrow{{A_1}{A_{n+1}}}$=2-1,可得:(xn+1)(xn+1-1)=1,化为xn+1=$\frac{{x}_{n}+2}{{x}_{n}+1}$>1,an+1=$|{x}_{n+1}-\sqrt{2}|$=$|\frac{{x}_{n}+2}{{x}_{n}+1}-\sqrt{2}|$=$\frac{\sqrt{2}-1}{{x}_{n}+1}|{x}_{n}-\sqrt{2}|$$≤\frac{\sqrt{2}-1}{2}{a}_{n}$,(只有n=1时取等号).利用“放缩法”与等比数列的前n项和公式即可得出.

解答 (1)解:∵$\overrightarrow{{A_0}{A_n}}•\overrightarrow{{A_1}{A_{n+1}}}$=-1其中n∈N*,又x0=-1,x1=1,
∴(xn+1,0)•(xn+1-1,0)=-1,
∴(xn+1)(xn+1-1)=-1,
化为$\frac{1}{{x}_{n+1}}-\frac{1}{{x}_{n}}$=1,
∴数列$\{\frac{1}{{x}_{n}}\}$为等差数列,首项为1,公差为1,
∴$\frac{1}{{x}_{n}}$=1+(n-1)=n,
∴xn=$\frac{1}{n}$.
(2)证明:当a=2时,$\overrightarrow{{A_0}{A_n}}•\overrightarrow{{A_1}{A_{n+1}}}$=2-1,可得:(xn+1)(xn+1-1)=1,
化为xn+1=$\frac{{x}_{n}+2}{{x}_{n}+1}$>1,
an+1=$|{x}_{n+1}-\sqrt{2}|$=$|\frac{{x}_{n}+2}{{x}_{n}+1}-\sqrt{2}|$=$\frac{\sqrt{2}-1}{{x}_{n}+1}|{x}_{n}-\sqrt{2}|$$≤\frac{\sqrt{2}-1}{2}{a}_{n}$,(只有n=1时取等号).
∴an+1$<(\frac{\sqrt{2}-1}{2})^{2}{a}_{n-1}$<…<$(\frac{\sqrt{2}-1}{2})^{n}{a}_{1}$=$(\frac{\sqrt{2}-1}{2})^{n}$$(\sqrt{2}-1)$.
∴Sn=a1+a2+…+an
<$(\sqrt{2}-1)$$[1+\frac{\sqrt{2}-1}{2}+(\frac{\sqrt{2}-1}{2})^{2}+…+(\frac{\sqrt{2}-1}{2})^{n-1}]$
=$(\sqrt{2}-1)•\frac{1-(\frac{\sqrt{2}-1}{2})^{n}}{1-\frac{\sqrt{2}-1}{2}}$<$\frac{2(\sqrt{2}-1)}{3-\sqrt{2}}$=$\frac{4\sqrt{2}-2}{7}$.
∴Sn<$\frac{{4\sqrt{2}-2}}{7}$.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“放缩法”、不等式的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网