题目内容

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的最小正周期是 ,最小值是﹣2,且图象经过点( ,0),则f(0)=

【答案】
【解析】解:由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的最小正周期是 ,最小值是﹣2,
可得 = ,即ω=3,A=2.
再根据f(x)的图象经过点( ,0),可得2sin(3× +φ)=0,可得sin(﹣ +φ)=0,∴φ= ,f(x)=2sin(3x+ ),
故f(0)=2sin =
所以答案是:
【考点精析】根据题目的已知条件,利用函数y=Asin(ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网