题目内容
【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.
年龄(单位:岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(Ⅱ)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.
参考数据如下:
附临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的观测值: (其中)
【答案】(Ⅰ)列联表见解析,有的把握认为“使用微信交流”的态度与人的年龄有关;(Ⅱ).
【解析】试题分析:
(Ⅰ)由所给数据可以计算出年龄不低于45岁和年龄低于45岁的的人中赞成、不赞成的人数,从而可得列联表,再由所给公式计算可知有无把握;
(Ⅱ)由分层抽样知区间上有2人,区间上有4人,把这6人分别编号后,可列举出任取3人的各种组合,分别计算后可得所求概率.
试题解析:
(Ⅰ)根据条件得列联表:
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成 | 10 | 27 | 37 |
不赞成 | 10 | 3 | 13 |
合计 | 20 | 30 | 50 |
根据列联表所给的数据代入公式得到:
所以有的把握认为“使用微信交流”的态度与人的年龄有关;
(Ⅱ)解:
按照分层抽样方法可知:
[55,65)(岁)抽取:(人);
[25,35)(岁)抽取:(人)
解:在上述抽取的6人中, 年龄在[55,65)(岁)有2人,年龄[25,35)(岁)有4人。
年龄在[55,65)(岁)记为;年龄在[25,35)(岁)记为, 则从6人中任取3名的所有情况为: 、、、、、、、、、、、、、、、、 共20种情况,
其中至少有一人年龄在[55,65)岁情况有:、、、、、、、、、、、、、、、,共16种情况。
记至少有一人年龄在[55,65)岁为事件,则
∴至少有一人年龄在[55,65)岁之间的概率为.
【题目】某科技兴趣小组对昼夜温差的大小与小麦新品种发芽多少之间的关系进行了研究,记录了2016年12月1日至12月5日五天的昼夜温差与相应每天100颗种子的发芽得到了如下数据:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差 | 9 | 11 | 10 | 12 | 13 |
发芽数(颗) | 21 | 34 | 26 | 36 | 40 |
现从这5组数据中任选两组,用余下的三组数据求回归直线方程,再对被选取的两组数据进行检验.
(Ⅰ)求选取的两组数据恰好是不相邻的两天的概率;
(Ⅱ)若选取的是12月1日和12月5日的两组数据,请根据余下的三组数据,求出与的线性回归直线方程;
(Ⅲ)若由线性回归直线方程得到的估计值与所选出的两组实际数据的误差均不超过两颗,则认为得到的回归直线方程是可靠的,试判断(Ⅱ)中得到的线性回归直线方程是否可靠.
附:在线性回归方程中,.