题目内容

19.己知0<a1<1,数列{an}满足:an+1=an-1+$\frac{n}{n{+}_{{a}_{n}}}$,n∈N+,则满足ai+aj(i<j,i,j∈N+)为整数的正整数组对(i,j)(  )
A.至多一对B.至多2对C.有无穷对D.不存在

分析 an+1=an-1+$\frac{n}{n{+}_{{a}_{n}}}$=${a}_{n}(1-\frac{1}{{a}_{n}+n})$,n∈N+.由0<a1<1,可得an>0.又an+1-an=-$\frac{{a}_{n}}{{a}_{n}+1}$<0,可得数列{an}单调递减,而a2=${a}_{1}•\frac{{a}_{1}}{{a}_{1}+1}$$<\frac{1}{2}{a}_{1}$$<\frac{1}{2}$,因此$0<{a}_{n}<\frac{1}{2}$对n≥2时恒成立.即可得出.

解答 解:an+1=an-1+$\frac{n}{n{+}_{{a}_{n}}}$=${a}_{n}(1-\frac{1}{{a}_{n}+n})$,n∈N+
∵0<a1<1,∴an>0,都为正.
又an+1-an=-$\frac{{a}_{n}}{{a}_{n}+1}$<0,∴数列{an}单调递减,
而${a}_{2}={a}_{1}(1-\frac{1}{{a}_{1}+1})$=${a}_{1}•\frac{{a}_{1}}{{a}_{1}+1}$$<\frac{1}{2}{a}_{1}$$<\frac{1}{2}$,因此$0<{a}_{n}<\frac{1}{2}$对n≥2时恒成立.
∴当i,j≥2时,不存在ai+aj(i<j,i,j∈N+)为整数.
只有可能a1+aj=1.
故选:A.

点评 本题考查了递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网