题目内容

14.为了纪念抗日战争胜利70周年,从甲、乙、丙等5名候选民警中选2名作为阅兵安保人员,为9月3号的阅兵提供安保服务,则甲、乙、丙三人中有2人被选中的概率是(  )
A.$\frac{3}{10}$B.$\frac{1}{10}$C.$\frac{3}{20}$D.$\frac{1}{20}$

分析 用列举法列举从甲、乙、丙等5名候选学生中选2名的情况,可得其情况数目,从中查找可得甲、乙、丙中2个被选中的情况数目,由古典概型公式,计算可得答案

解答 解:从甲、乙、丙等5名候选学生中选2名作为青年志愿者,
共有(甲,乙),(甲,丙),(甲,丁),(甲,戊),
(乙,丙),(乙,丁),(乙,戊),
(丙,丁),(丙,戊),(丁,戊)10种情况,
其中甲、乙、丙中2个被选中包含其中的三种情况.
所以则甲、乙、丙中2个被选中的概率为$\frac{3}{10}$.
故选A.

点评 本题考查的是古典型概率.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m÷n

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网