题目内容

11.如图,已知圆M:x2+(y-4)2=4,Q是x轴上的动点,QA、QB分别切圆M于A,B两点.
(1)若点Q的坐标为(2,0),求切线QA、QB的方程;
(2)求四边形QAMB的面积的最小值及此时点Q的坐标;
(3)若AB=$\sqrt{14}$,且Q在x轴正半轴上,求四边形QAMB外接圆的方程.

分析 (1)设出切线方程,利用圆心到直线的距离等于半径,即可求切线QA、QB的方程;
(2)求出四边形QAMB的面积的表达式,利用|MQ|>|MO|求出面积的最小值;
(3)设AB与MQ交于点P,通过MP⊥AB,MB⊥BQ,求出|MP|,求出|MQ|,确定Q的坐标,即可求四边形QAMB外接圆的方程.

解答 解:(1)设过点Q的圆M的切线方程为x=my+2,------(1分)
则圆心M到切线的距离为2,∴$\frac{|4m+2|}{\sqrt{1+{m}^{2}}}$=2,
∴m=-$\frac{4}{3}$或0,------(4分)
∴切线QA、QB的方程分别为3x+4y-6=0和x=2------(5分)
(2)∵MA⊥AQ,∴SMAQB=|MA|•|QA|=$\sqrt{|MQ{|}^{2}-1}$≥$\sqrt{|MO{|}^{2}-1}$=$\sqrt{15}$,此时Q(0,0);-----(10分)
(3)设AB与MQ交于点P,则MP⊥AB,MB⊥BQ,|MP|=$\frac{\sqrt{2}}{2}$,
在Rt△MBQ中,|MB|2=|MP|•|MQ|,解得|MQ|=4$\sqrt{2}$
设Q(x,0),则x2+16=32,Q在x轴正半轴上,∴x=4
∴四边形QAMB外接圆的方程是(x-2)2+(y-2)2=8.----(14分)

点评 本题考查圆的切线方程的求法,四边形面积的求法,两点间的距离公式的应用,考查转化思想与计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网