题目内容
4.对于正项数列{an},定义Hn=$\frac{n}{{a}_{1}+2{a}_{2}+3{a}_{3}+…+n{a}_{n}}$为{an}的“光阴”值,现知某数列的“光阴”值为Hn=$\frac{2}{n+3}$,则数列{an}的通项公式为( )A. | an=$\frac{n+1}{n}$ | B. | an=$\frac{2n+1}{n}$ | C. | an=$\frac{2n+1}{2n}$ | D. | an=$\frac{3n+1}{2n}$ |
分析 通过定义及Hn=$\frac{2}{n+3}$可得a1+2a2+…+nan=$\frac{n(n+3)}{2}$、a1+2a2+…+(n-1)an-1=$\frac{(n-1)(n+2)}{2}$,两式相减,进而计算可得结论.
解答 解:∵Hn=$\frac{n}{{a}_{1}+2{a}_{2}+3{a}_{3}+…+n{a}_{n}}$,
∴a1+2a2+…+nan=$\frac{n}{{H}_{n}}$,
又∵Hn=$\frac{2}{n+3}$,
∴a1+2a2+…+nan=$\frac{n(n+3)}{2}$,
a1+2a2+…+(n-1)an-1=$\frac{(n-1)(n+2)}{2}$,
两式相减得:nan=$\frac{n(n+3)}{2}$-$\frac{(n-1)(n+2)}{2}$=$\frac{2n+2}{2}$,
∴an=$\frac{n+1}{n}$,
故选:A.
点评 本题考查新定义,考查数列的通项,解题的关键是理解新定义,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
15.沙坪坝凯瑞商都于2015年4月24日重新装修开业,某调查机构通过调查问卷的形式对900名顾客进行购物满意度调查,并随机抽取了其中30名顾客(女16名.男14名)的得分(满分50分),如表1:
表1
(Ⅰ)根据以上数据,估计这900名顾客中得分大于45分的人数;
(Ⅱ)现用计算器求得这30名顾客的平均得分为40.5分,若规定大于平均分为“满意”,
否则为“不满意”,请完成表2:
表2
(Ⅲ)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为顾客“性别”与“购物是否满意”有关?
参考公式和数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
表1
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(Ⅱ)现用计算器求得这30名顾客的平均得分为40.5分,若规定大于平均分为“满意”,
否则为“不满意”,请完成表2:
表2
“满意”的人数 | “不满意”的人数 | 合计 | |
女 | 16 | ||
男 | 14 | ||
合计 | 40 |
参考公式和数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
19.如图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则可以估计出阴影部分的面积约为( )
A. | $\frac{23}{11}$ | B. | $\frac{23}{10}$ | C. | $\frac{23}{6}$ | D. | $\frac{23}{5}$ |
17.为了得到函数$y=sin(x-\frac{π}{3})(x∈R)$的图象,只需把函数y=sinx的图象上所有的点( )
A. | 向右平移$\frac{π}{3}$个单位长度 | B. | 向右平移$\frac{π}{6}$个单位长度 | ||
C. | 向左平移$\frac{π}{3}$个单位长度 | D. | 向左平移$\frac{π}{6}$个单位长度 |