题目内容
14.若(1-2x)7=a0+a1x+a2x2+…+a7x7,则a2的值是84.分析 由题意,所求为x2的系数,利用展开式通项解答.
解答 解:由已知展开式的通项为${C}_{7}^{r}(-2)^{r}{x}^{r}$,令r=2,得到a2的值是${C}_{7}^{2}(-2)^{2}$=84;
故答案为:84.
点评 本题考查了二项展开式的系数;关键是正确写出展开式的通项,对字母指数取值.
练习册系列答案
相关题目
5.已知$\overrightarrow a=(2,1-cosθ)$,$\overrightarrow b=(1+cosθ,\frac{1}{4})$,且$\overrightarrow a$∥$\overrightarrow b$,则钝角θ等于( )
A. | 45° | B. | 135° | C. | 150° | D. | 120° |
2.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+ax(x≤1)}\\{{a}^{2}x-7a+14(x>1)}\end{array}\right.$,若?x1,x2∈R,且x1≠x2,使得f(x1)=f(x2),则实数a的取值范围是( )
A. | [2,3]∪(-∞,-5] | B. | (-∞,2)∪(3,5) | C. | [2,3] | D. | [5,+∞) |
19.已知椭圆 $\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(3,0),点(0,-3)在椭圆上,则椭圆的方程为( )
A. | $\frac{{x}^{2}}{45}$+$\frac{{y}^{2}}{{18}^{2}}$=1 | B. | $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{27}$=1 | C. | $\frac{{x}^{2}}{27}$+$\frac{{y}^{2}}{18}$=1 | D. | $\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1 |
4.对于正项数列{an},定义Hn=$\frac{n}{{a}_{1}+2{a}_{2}+3{a}_{3}+…+n{a}_{n}}$为{an}的“光阴”值,现知某数列的“光阴”值为Hn=$\frac{2}{n+3}$,则数列{an}的通项公式为( )
A. | an=$\frac{n+1}{n}$ | B. | an=$\frac{2n+1}{n}$ | C. | an=$\frac{2n+1}{2n}$ | D. | an=$\frac{3n+1}{2n}$ |