题目内容
【题目】已知函数
(1)求函数f(x)的最小正周期和函数的单调递增区间;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若 ,求AB.
【答案】
(1)解:函数 ,
化解可得:f(x)=2sin2xcos +cos2x+1= sin2x+cos2x+1=2sin(2x+ )+1.
∴函数f(x)的最小正周期T= ,
由 得 ,
故函数f(x)的单调递增区间
(2)解:∵ ,
∴ ,
∵0<A<π,
∴ ,
∴ ,
,
在△ABC中,由正弦定理得: ,
即 .
,即
【解析】(1)利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;(2)根据f(A)=3时,求解A,正弦定理求解b,再有余弦可得AB即c的值(或者求解sinC,正弦定理求解c)
【题目】某地最近十年对某商品的需求量逐年上升,下表是部分统计数据:
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
需要量(万件) | 236 | 246 | 257 | 276 | 286 |
(1)利用所给数据求年需求量y与年份x之间的回归直线方程 = x+ ;
(2)预测该地2018年的商品需求量(结果保留整数).