题目内容

【题目】已知函数.

(1)若,解不等式

(2)若存在实数,使得不等式成立,求实数的取值范围.

【答案】(1);(2).

【解析】试题分析:(1)由绝对值定义将不等式化为三个不等式组,分别求解集,最后求并集(2)先化简不等式为|3x﹣a|﹣|3x+6|≥1﹣a,再根据绝对值三角不等式得|3x﹣a|﹣|3x+6|最大值为|a+6|,最后解不等式得实数的取值范围

试题解析:解:(1)a=2时:f(x)=|3x﹣2|﹣|x+2|≤3,

解得:﹣≤x≤

(2)不等式f(x)≥1﹣a+2|2+x|成立,

即|3x﹣a|﹣|3x+6|≥1﹣a,

由绝对值不等式的性质可得||3x﹣a|﹣|3x+6||≤|(3x﹣a)﹣(3x+6)|=|a+6|,

即有f(x)的最大值为|a+6|,

解得:a≥﹣

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网