题目内容
【题目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1 , 则异面直线BA1与AC1所成的角等于( )
A.30°
B.45°
C.60°
D.90°
【答案】C
【解析】延长CA到D,使得AD=AC,则ADA1C1为平行四边形,
∠DA1B就是异面直线BA1与AC1所成的角,
又A1D=A1B=DB=AB,
则三角形A1DB为等边三角形,∴∠DA1B=60°
故选C.
【考点精析】认真审题,首先需要了解异面直线及其所成的角(异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系).
练习册系列答案
相关题目