题目内容
13.与双曲线x2-$\frac{y^2}{4}$=1有共同的渐近线,且过点(2,2)的双曲线方程为( )A. | $\frac{x^2}{2}$-$\frac{y^2}{8}$=1 | B. | $\frac{x^2}{3}$-$\frac{y^2}{12}$=1 | C. | $\frac{y^2}{3}$-$\frac{x^2}{12}$=1 | D. | $\frac{y^2}{2}$-$\frac{x^2}{8}$=1 |
分析 设双曲线方程为${x^2}-\frac{y^2}{4}=k$,利用双曲线过点(2,2),求出k,即可得出双曲线方程.
解答 解:设双曲线方程为${x^2}-\frac{y^2}{4}=k$.
∵双曲线过点(2,2),∴${2^2}-\frac{2^2}{4}=k$,
∴k=3.
故选:B.
点评 本题考查双曲线方程与性质,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
3.命题p:?x∈R,2x<3x;命题q:?x∈R,$\sqrt{x}=lo{g}_{\frac{1}{2}}x$,则下列命题中为真命题的是( )
A. | p∧q | B. | ¬p∧q | C. | p∧¬q | D. | ¬p∧¬q |
4.对某次联考数学成绩(百分制)进行分析,如图为分析结果的频率分布直方图.根据标准,成绩分数在区间[50,60)上为不及格,在[60,70)上为一般,在[70,80)上为较好,在[80,90)上为良好,在[90,100]上为优秀.用频率估计概率,若从参考学生中随机抽取1人,则其成绩为优良(优秀或良好)的概率为( )
A. | 0.09 | B. | 0.20 | C. | 0.25 | D. | 0.40 |
8.已知圆C1:(x-3)2+(y+1)2=1,圆C2与圆C1关于直线2x-y-2=0对称,则圆C2的方程为( )
A. | (x-1)2+(y-2)2=1 | B. | x2+(y-1)2=1 | C. | (x+1)2+(y-1)2=1 | D. | (x+2)2+(y-1)2=1 |