题目内容

2.(1)若log67=a,log34=b,求log127的值.
(2)若函数f(x)=lg$\frac{1+{2}^{x}+{3}^{x}a}{3}$在(-∞,1]有意义,求a的取值范围.

分析 (1)利用对数的换底公式、对数的运算法则即可得出.
(2)f(x)在x∈(-∞,1)内恒有意义可化为$\frac{1+{2}^{x}+{3}^{x}a}{3}$>0在(-∞,1)上恒成立;即a>-[($\frac{2}{3}$)x+($\frac{1}{3}$)x]在(-∞,1)上恒成立;从而解得.

解答 解:(1)∵log34=$\frac{lo{{g}_{2}}^{4}}{lo{{g}_{2}}^{3}}$=$\frac{2}{lo{{g}_{2}}^{3}}$=b,
∴$lo{{g}_{2}}^{3}$=$\frac{2}{b}$,
∴log127=$\frac{lo{{g}_{6}}^{7}}{lo{{g}_{6}}^{2}+1}$=$\frac{a}{\frac{1}{lo{{g}_{2}}^{3}+lo{{g}_{2}}^{2}}+1}$=$\frac{a}{\frac{1}{\frac{2}{b}+1}+1}$=$\frac{a(b+2)}{2(b+1)}$;
(2))∵f(x)在x∈(-∞,1)内恒有意义,
∴$\frac{1+{2}^{x}+{3}^{x}a}{3}$>0在(-∞,1)上恒成立;
∴a>-[($\frac{2}{3}$)x+($\frac{1}{3}$)x]在(-∞,1)上恒成立;
又∵y=-[($\frac{2}{3}$)x+($\frac{1}{3}$)x]在(-∞,1)上是增函数,
故a≥-[($\frac{2}{3}$)1+($\frac{1}{3}$)1]=-1;
故a的取值范围为[-1,+∞).

点评 本题考查了对数的换底公式、对数的运算法则,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网