题目内容
8.已知圆C1:(x-3)2+(y+1)2=1,圆C2与圆C1关于直线2x-y-2=0对称,则圆C2的方程为( )A. | (x-1)2+(y-2)2=1 | B. | x2+(y-1)2=1 | C. | (x+1)2+(y-1)2=1 | D. | (x+2)2+(y-1)2=1 |
分析 设圆C2的圆心为(a,b),则由再根据垂直及中点在轴上这两个条件,求出圆心关于直线的对称点C2的坐标,即可求得关于直线对称的圆的方程.
解答 解:设圆C2的圆心为(a,b),则由$\left\{\begin{array}{l}{\frac{b+1}{a-3}×2=-1}\\{2×\frac{a+3}{2}-\frac{b-1}{2}-2=0}\end{array}\right.$,求得$\left\{\begin{array}{l}{a=-1}\\{b=1}\end{array}\right.$,
故圆C2的圆心(-1,1),且半径为1,故圆C2的方程为(x+1)2+(y-1)2=1,
故选:C.
点评 本题主要考查直线和圆的位置关系,求一个圆关于直线的对称圆的方程的方法,关键是求出圆心关于直线的
对称点的坐标,属于中档题.
练习册系列答案
相关题目
19.(A)设函数f(x)=xcosx-sinx,x∈(0,π),则f(x)的单调性是( )
A. | 增函数 | B. | 减函数 | C. | 先增后减函数 | D. | 先减后增函数 |
3.已知直线x+2ay-1=0与直线(a-2)x-ay+2=0平行,则a的值是( )
A. | $\frac{3}{2}$ | B. | $\frac{3}{2}$或0 | C. | -$\frac{2}{3}$ | D. | -$\frac{2}{3}$或0 |
13.与双曲线x2-$\frac{y^2}{4}$=1有共同的渐近线,且过点(2,2)的双曲线方程为( )
A. | $\frac{x^2}{2}$-$\frac{y^2}{8}$=1 | B. | $\frac{x^2}{3}$-$\frac{y^2}{12}$=1 | C. | $\frac{y^2}{3}$-$\frac{x^2}{12}$=1 | D. | $\frac{y^2}{2}$-$\frac{x^2}{8}$=1 |
1.先后抛掷两枚均匀的骰子,骰子点数分别记为x,y,则log2xy>1的概率为( )
A. | $\frac{1}{6}$ | B. | $\frac{5}{36}$ | C. | $\frac{7}{36}$ | D. | $\frac{5}{12}$ |