题目内容
15.正方体ABCD-A1B1C1D1的棱长为1,M是棱AB的中点,点P是平面ABCD上的动点,P到直线A1D1的距离为d,且d2-|PM|2=1,则动点P的轨迹是( )A. | 圆 | B. | 抛物线 | C. | 椭圆 | D. | 双曲线 |
分析 作PQ⊥AD,作QR⊥D1A1,PR即为点P到直线A1D1的距离,由勾股定理得PR2-PQ2=RQ2=1,又已知PR2-PM2=1,PM=PQ,即P到点M的距离等于P到AD的距离.
解答 解:如图所示:正方体ABCD-A1B1C1D1中,作PQ⊥AD,Q为垂足,
则PQ⊥面ADD1A1,过点Q作QR⊥D1A1,
则D1A1⊥面PQR,PR即为点P到直线A1D1的距离,
由题意可得PR2-PQ2=RQ2=1.
又已知PR2-PM2=1,
∴PM=PQ,即P到点M的距离等于P到AD的距离,根据抛物线的定义可得,点P的轨迹是抛物线,
故选:B.
点评 本题考查抛物线的定义,求点的轨迹方程的方法,体现了数形结合的数学思想,得到PM=PQ是解题的关键.
练习册系列答案
相关题目
6.若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[-1,0]时,f(x)=-x,则f(2011)=( )
A. | 1 | B. | 0 | C. | 2010 | D. | 2011 |
3.在△ABC中,∠A=120°,AC=$\sqrt{3}$,AB=2$\sqrt{3}$,O为BC的中点,则AO=( )
A. | $\sqrt{3}$ | B. | $\frac{3}{2}$ | C. | $\frac{9}{4}$ | D. | 9 |