ÌâÄ¿ÄÚÈÝ
3£®ÏÂÁÐÃüÌ⣺¢Ùº¯Êýy=$\frac{x-1}{x+1}$µÄµ¥µ÷Çø¼äÊÇ£¨-¡Þ£¬-1£©¡È£¨-1£¬+¡Þ£©£®
¢Úº¯Êýy=2sin£¨2x-$\frac{¦Ð}{4}$£©µÄÒ»¸öµ¥µ÷µÝÔöÇø¼äÊÇ$[-\frac{¦Ð}{8}£¬\frac{3¦Ð}{8}]$£»
¢Ûº¯Êý$f£¨x£©=sin£¨2x+\frac{¦Ð}{3}£©$ͼÏó¹ØÓÚÖ±Ïß$x=\frac{¦Ð}{3}$¶Ô³Æ£®
¢ÜÒÑÖªº¯Êýf£¨x£©=ex-mx+1µÄͼÏóΪÇúÏßC£¬ÈôÇúÏßC´æÔÚÓëÖ±Ïßy=$\frac{1}{2}x$´¹Ö±µÄÇÐÏߣ¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇm£¾2£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ¢Ú¢Ü£®
·ÖÎö ¢Ùº¯Êýy=$\frac{x-1}{x+1}$£¬Ö»ÌÖÂÛÔÚ£¨-¡Þ£¬-1£©ºÍ£¨-1£¬+¡Þ£©µÄµ¥µ÷ÐÔ£»
¢Ú¢Û¸ù¾ÝÈý½ÇÐκ¯ÊýµÄͼÏóºÍÐÔÖÊÅжϣ»
¢ÜÇó³öÇúÏßC£ºf£¨x£©µÄµ¼Êý£¬¼´CµÄÇÐÏßбÂÊ£¬ÒòÓëÖ±Ïßy=$\frac{1}{2}$x´¹Ö±£¬¿ÉµÃmµÄÈ¡Öµ·¶Î§£®
½â´ð ½â£º¶ÔÓÚ¢Ùº¯Êýy=$\frac{x-1}{x+1}$=1-$\frac{2}{x+1}$ÔÚÇø¼ä£¨-¡Þ£¬-1£©ºÍ£¨-1£¬+¡Þ£©¶¼ÊÇÔöº¯Êý£¬µ«ÔÚ£¨-¡Þ£¬-1£©¡È£¨-1£¬+¡Þ£©Éϲ»ÊÇÔöº¯Êý£®¹Ê¢Ù´íÎó£»
¶ÔÓÚ¢Úº¯Êýy=2sin£¨2x-$\frac{¦Ð}{4}$£©µÄµ¥µ÷µÝÔö£¬-$\frac{¦Ð}{2}$+2k¦Ð¡Ü2x-$\frac{¦Ð}{4}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬¼´-$\frac{¦Ð}{8}$+k¦Ð¡Üx¡Ük¦Ð+$\frac{3¦Ð}{8}$£¬µ±k=0ʱ£¬¼´Îª£¬¼´-$\frac{¦Ð}{8}$¡Üx¡Ü$\frac{3¦Ð}{8}$£¬¹Ê¢ÚÕýÈ·£»
¶ÔÓÚ¢Ûº¯Êý$f£¨x£©=sin£¨2x+\frac{¦Ð}{3}£©$ͼÏóµÄ¶Ô³ÆÖáΪ2x+$\frac{¦Ð}{3}$=k¦Ð+$\frac{¦Ð}{2}$£¬¼´x=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$£¬µ±k=1ÊÕ£¬x=$\frac{7¦Ð}{12}$£¬µ±k=0ʱ£¬x=$\frac{7¦Ð}{12}$£¬¹Ê¢Û´íÎó£»
¶ÔÓڢܡßÇúÏßCµÄ·½³Ì£ºf£¨x£©=ex-mx+1£¬¡àf¡ä£¨x£©=ex-m£¬ÓÉÇúÏßCµÄÇÐÏßÓëÖ±Ïßy=$\frac{1}{2}$x´¹Ö±£¬µÃ£¨ex-m£©•$\frac{1}{2}$=-1£¬¡àm=ex+2£¾2£¬¹Ê¢ÜÕýÈ·£»
¹Ê´ð°¸Îª£º¢Ú¢Ü£®
µãÆÀ ±¾Ìâͨ¹ýÃüÌâÕæ¼ÙµÄÅж¨£¬¿¼²éÁ˺¯ÊýµÄµ¥µ÷ÐÔ£¬Èý½Çº¯ÊýµÄÐÔÖÊ£¬µ¼Êý֪ʶµÄÓ¦Óã¬ÊÇÈÝÒ׳ö´íµÄÌâÄ¿£¬ÊôÓÚÖеµÌ⣮
A£® | Ô² | B£® | Å×ÎïÏß | C£® | ÍÖÔ² | D£® | Ë«ÇúÏß |
A£® | $\frac{5}{2}\sqrt{21}$ | B£® | $\frac{25}{4}$ | C£® | $\frac{15}{4}$ | D£® | $\frac{3}{2}\sqrt{5}$ |
A£® | $\frac{7}{25}$ | B£® | $-\frac{7}{25}$ | C£® | $\frac{24}{25}$ | D£® | $-\frac{24}{25}$ |
A£® | $£¨0£¬\frac{1}{4}£©$ | B£® | $£¨0£¬\frac{{\sqrt{3}}}{2}£©$ | C£® | $£¨0£¬\frac{1}{2}£©$ | D£® | £¨$\frac{1}{4}$£¬$\frac{\sqrt{3}}{2}$£© |