题目内容

【题目】为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:[20,25),[25,30),[30,35),[35,40),[40,45].

(Ⅰ)求图中x的值并根据频率分布直方图估计这500名志愿者中年龄在[35,40)岁的人数;
(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X,求X的分布列及数学期望.

【答案】解:(I)∵小矩形的面积等于频率,而频率之和等于1.
∴(0.07+x+0.04+0.02+0.01)×5=1,
解得x=0.06.
500名志愿者中,年龄在[35,40)岁的人数为0.06×5×500=150(人).
(II)用分层抽样的方法,从100名志愿者中选取20名,
则其中年龄“低于35岁”的人有12名,
“年龄不低于35岁”的人有8名.
故X的可能取值为0,1,2,3,P(X=0)= = =
=
故X的分布列为

X

0

1

2

3

P

∴EX= = =
【解析】(I)根据小矩形的面积等于频率,而频率之和等于1.即可得出x,再用频率×总体容量即可.(II)分层抽样的方法,从100名志愿者中选取20名;则其中年龄“低于35岁”的人有20×(0.01+0.04+0.07)×5=12名,“年龄不低于35岁”的人有8名.X的可能取值为0,1,2,3,再利用超几何分布即可得出,再利用数学期望的计算公式即可得出.
【考点精析】本题主要考查了离散型随机变量及其分布列的相关知识点,需要掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网