ÌâÄ¿ÄÚÈÝ
13£®ÔÚÏÂÁиø³öµÄÃüÌâÖУ¬ËùÓÐÕýÈ·ÃüÌâµÄÐòºÅΪ¢Ù¢Ú¢Û£®¢Ùº¯Êýy=2x3+3x-1µÄͼÏó¹ØÓڵ㣨0£¬1£©³ÉÖÐÐĶԳƣ»
¢Ú¶Ô?x£¬y¡ÊR£®Èôx+y¡Ù0£¬Ôòx¡Ù1»òy¡Ù-1£»
¢ÛÈôʵÊýx£¬yÂú×ãx2+y2=1£¬Ôò$\frac{y}{x+2}$µÄ×î´óֵΪ$\frac{{\sqrt{3}}}{3}$£»
¢ÜÈô¡÷ABCΪÈñ½ÇÈý½ÇÐΣ¬ÔòsinA£¼cosB£®
¢ÝÔÚ¡÷ABCÖУ¬BC=5£¬G£¬O·Ö±ðΪ¡÷ABCµÄÖØÐĺÍÍâÐÄ£¬ÇÒ$\overrightarrow{OG}$•$\overrightarrow{BC}$=5£¬Ôò¡÷ABCµÄÐÎ×´ÊÇÖ±½ÇÈý½ÇÐΣ®
·ÖÎö ¢Ù¸ù¾Ý¶Ô³ÆÐԵȺ¯ÊýµÄÐÔÖÊÅжÏ
¢ÚÓɶÔÈ«³ÆÁ¿´ÊµÄ·ñ¶¨À´ÅжÏÃüÌâÕæ¼Ù£¬
¢ÛÀûÓú¯ÊýµÄÐÔÖÊÊýÐνáºÏ£¬¿ÉÒԵõ½ÕýÈ·µÄ½áÂÛ£®
¢Ü½áºÏÈý½Çº¯ÊýµÄÐÔÖʽøÐÐÅжϼ´¿É
¢ÝÔÚ¡÷ABCÖУ¬G£¬O·Ö±ðΪ¡÷ABCµÄÖØÐĺÍÍâÐÄ£¬È¡BCµÄÖеãΪD£¬Á¬½ÓAD¡¢OD¡¢GD£¬ÔËÓÃÖØÐĺÍÍâÐĵÄÐÔÖÊ£¬ÔËÓÃÏòÁ¿µÄÈý½ÇÐη¨ÔòºÍÖеãµÄÏòÁ¿ÐÎʽ£¬ÒÔ¼°ÏòÁ¿µÄƽ·½¼´ÎªÄ£µÄƽ·½£¬
½â´ð ½â£º¶ÔÓÚ¢Ùº¯Êýy=2x3-3x+1=µÄͼÏó¹ØÓڵ㣨0£¬1£©³ÉÖÐÐĶԳƣ¬¼ÙÉèµã£¨x0£¬y0£©ÔÚº¯ÊýͼÏóÉÏ£¬ÔòÆä¹ØÓڢٵ㣨0£¬1£©µÄ¶Ô³ÆµãΪ£¨-x0£¬2-y0£©Ò²Âú×㺯ÊýµÄ½âÎöʽ£¬Ôò¢ÙÕýÈ·£»
¶ÔÓÚ¢Ú¶Ô?x£¬y¡ÊR£¬Èôx+y¡Ù0£¬¶ÔÓ¦µÄÊÇÖ±Ïßy=-xÒÔÍâµÄµã£¬Ôòx¡Ù1£¬»òy¡Ù-1£¬¢ÚÕýÈ·£»
¶ÔÓÚ¢ÛÈôʵÊýx£¬yÂú×ãx2+y2=1£¬Ôò$\frac{y}{x+2}$=$\frac{y-0}{x-£¨-2£©}$£¬¿ÉÒÔ¿´×÷ÊÇÔ²x2+y2=1ÉϵĵãÓëµã£¨-2£¬0£©Á¬ÏßµÄбÂÊ£¬Æä×î´óֵΪ$\frac{\sqrt{3}}{3}$£¬¢ÛÕýÈ·£»
¶ÔÓÚ¢ÜÈô¡÷ABCΪÈñ½ÇÈý½ÇÐΣ¬ÔòA£¬B£¬¦Ð-A-B¶¼ÊÇÈñ½Ç£¬
¼´¦Ð-A-B£¼$\frac{¦Ð}{2}$£¬¼´A+B£¾$\frac{¦Ð}{2}$£¬B£¾$\frac{¦Ð}{2}$-A£¬
ÔòcosB£¼cos£¨$\frac{¦Ð}{2}$-A£©£¬
¼´cosB£¼sinA£¬¹Ê¢Ü²»ÕýÈ·£®
¶ÔÓÚ¢ÝÔÚ¡÷ABCÖУ¬G£¬O·Ö±ðΪ¡÷ABCµÄÖØÐĺÍÍâÐÄ£¬
È¡BCµÄÖеãΪD£¬Á¬½ÓAD¡¢OD¡¢GD£¬Èçͼ£ºÔòOD¡ÍBC£¬GD=$\frac{1}{3}$AD£¬
¡ß$\overrightarrow{OG}$=$\overrightarrow{OD}+\overrightarrow{DG}$|£¬$\overrightarrow{AD}=\frac{1}{2}£¨\overrightarrow{AB}+\overrightarrow{AC}£©$
ÓÉ$\overrightarrow{OG}•\overrightarrow{BC}=5$
Ôò$£¨\overrightarrow{OD}+\overrightarrow{DG}£©•\overrightarrow{BC}=\overrightarrow{DG}•\overrightarrow{BC}=-\frac{1}{6}$$£¨\overrightarrow{AB}+\overrightarrow{AC}£©•\overrightarrow{BC}=5$£¬
¼´$-\frac{1}{6}•£¨\overrightarrow{AB}+\overrightarrow{AC}£©£¨\overrightarrow{AC}+\overrightarrow{AB}£©=5$
Ôò${\overrightarrow{AC}}^{2}-{\overrightarrow{AB}}^{2}=-30$
ÓÖBC=5
ÔòÓÐ$|\overrightarrow{AB}{|}^{2}=|\overrightarrow{AC}{|}^{2}+\frac{6}{5}|\overrightarrow{BC}{|}^{2}£¾|\overrightarrow{AC}{|}^{2}+|\overrightarrow{BC}{|}^{2}$
ÓÉÓàÏÒ¶¨Àí¿ÉµÃcosC£¼0£¬
¼´ÓÐCΪ¶Û½Ç£®
ÔòÈý½ÇÐÎABCΪ¶Û½ÇÈý½ÇÐΣ»¢Ý²»ÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û
µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ýµÄÐÔÖʺÍÔËÓá¢Èý½Çº¯ÊýµÄÐÔÖÊ¡¢ÃüÌâÕæ¼ÙµÄÅжϵȣ¬Ê¹ÓÃÁËÊýÐνáºÏµÄ˼Ï룬ÊÇÊýѧÖеij£¼û˼Ï룬Ҫ¼ÓÉîÌå»á£®ÄѶȽϴó
A£® | -3 | B£® | -2 | C£® | -1 | D£® | 2 |
A£® | $\frac{1}{2}$ | B£® | $\frac{\sqrt{3}}{2}$ | C£® | $\frac{\sqrt{2}}{2}$ | D£® | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |