题目内容
18.如图,P为⊙O外一点,过P=点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PA=4.分析 利用切割线定理可得QA2=QC•QD,可求QA,即可得PA.
解答 解:∵QA是⊙O的切线,
∴QA2=QC•QD,
∵QC=1,CD=3,
∴QA2=4,
∴QA=2,
∴PA=4,
故答案为:4.
点评 本题考查圆的切线长定理,考查切割线定理,考查学生的计算能力,属于基础题.
练习册系列答案
相关题目
6.已知sinα+cos(π-α)=$\frac{1}{3}$,则sin2α的值为( )
A. | $\frac{8}{9}$ | B. | $\frac{1}{9}$ | C. | $-\frac{8}{9}$ | D. | $\frac{4}{9}$ |
10.已知数列{an}满足2an+1+an=0,a2=1,则{an}的前9项和等于( )
A. | -$\frac{2}{3}$(1-2-9) | B. | $\frac{1}{3}$(1-2-9) | C. | -$\frac{4}{3}$(1+2-9) | D. | (1-2-9) |
7.在某学校组织的一次利于定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A处的命中率q1为$\frac{1}{4}$,在B处的命中率为q2.该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为:
(I)求q2的值;
(Ⅱ)求随机变量ξ的数学期望.
ξ | 0 | 2 | 3 | 4 | 5 |
P | $\frac{3}{25}$ | p1 | p2 | p3 | p4 |
(Ⅱ)求随机变量ξ的数学期望.