题目内容
【题目】已知椭圆C:过点A,两个焦点为(-1,0),(1,0)。
(Ⅰ)求椭圆C的方程;
(Ⅱ)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
【答案】(1)(2)直线的斜率为定值
【解析】
试题(1) 由题意,设椭圆方程为,将代入即可求出,则椭圆方程可求.
(2)设直线AE方程为:,代入入得
,再由点在椭圆上,根据结直线的斜率与的斜率互为相反数,结合直线的位置关系进行求解.
(1)由题意,设椭圆方程为,
因为点在椭圆上,所以,解得,
所求椭圆方程为
(2)设直线方程为,代入得
设,,点在直线上
则,;
直线的斜率与直线的斜率互为相反数,在上式中用代替得
,,
直线的斜率
所以直线的斜率为定值
练习册系列答案
相关题目