题目内容
【题目】如图,在平面直角坐标系中,已知椭圆的离心率,左顶点为,过点A作斜率为的直线l交椭圆C于点D,交y轴于点E.
(1)求椭圆C的方程;
(2)已知点P为的中点,是否存在定点Q,对于任意的都有?若存在,求出点Q的坐标,若不存在,说明理由;
(3)若过点O作直线l的平行线交椭圆C于点M,求的最小值.
【答案】(1);(2)存在,;(3).
【解析】
(1)根据条件可直接求出答案
(2)联立直线l的方程与椭圆的方程消元,用表示出点坐标,然后可得P点坐标,假设存在顶点,使得,则,即,然后推出,即可得到答案
(3)首先得出M点横坐标为,然后可得,然后用基本不等式求解即可.
(1)由椭圆的左顶点,则,又,则,
又,
∴椭圆的标准方程为:;
(2)由直线l的方程为,
由,整理得:,
由是方程的根,由韦达定理可知:,则,
当,,
∴,
由P为的中点,
∴P点坐标,
直线l的方程为,令,得,
假设存在定点,使得,
则,即,
,,
∴
即恒成立,
∴,即,
∴顶点Q的坐标为;
(3)由,则的方程为,
,则M点横坐标为,
由,可知,
,
当且仅当,即时,取等号,
∴当时,的最小值为.
【题目】今年1月至2月由新型冠状病毒引起的肺炎病例陡然增多,为了严控疫情传播,做好重点人群的预防工作,某地区共统计返乡人员人,其中岁及以上的共有人.这人中确诊的有名,其中岁以下的人占.
(1)请将下面的列联表补充完整,并判断是否有%的把握认为是否确诊患新冠肺炎与年龄有关;
确诊患新冠肺炎 | 未确诊患新冠肺炎 | 合计 | |
50岁及以上 | 40 | ||
50岁以下 | |||
合计 | 10 | 100 |
(2)为了研究新型冠状病毒的传染源和传播方式,从名确诊人员中随机抽出人继续进行血清的研究,表示被抽取的人中岁以下的人数,求的分布列以及数学期望.
参考表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
【题目】众所周知,大型网络游戏(下面简称网游)的运行必须依托于网络的基础上,否则会出现频繁掉线的情况,进而影响游戏的销售和推广,某网游经销在甲地区5个位置对两种类型的网络(包括“电信”和“网通”)在相同条件下进行游戏掉线的测试,得到数据如下:
位置 类型 | A | B | C | D | E |
电信 | 4 | 3 | 8 | 6 | 12 |
网通 | 5 | 7 | 9 | 4 | 3 |
(1)如果在测试中掉线次数超过5次,则网络状况为“糟糕”,否则为“良好”,那么在犯错误的概率不超过0.15的前提下,能否说明网络状况与网络的类型有关?
(2)若该游戏经销商要在上述接受测试的电信的5个地区中任选2个作为游戏推广,求A,B两地区至少选到一个的概率.
参考公式:.