题目内容
【题目】已知函数.
(1)若,求的单调区间;
(2)证明:(i);
(ii)对任意,对恒成立.
【答案】(1)的单调递增区间为,,的单调递减区间为. (2)(i)证明见解析(ii)证明见解析
【解析】
(1)将代入函数解析式,并求得导函数,由导函数的符号即可判断的单调区间;
(2)(i)构造函数并求得,利用的单调性求得最大值,即可证明不等式成立.;(ii)由(i)可知将不等式变形可得成立,构造函数,因式分解后解一元二次不等式即可证明对恒成立.
(1)若,(),
令,得或, 则的单调递增区间为,.
令,得,则的单调递减区间为.
(2)证明:(i)设,
则(),
令,得;
令,得.
故,
从而,即.
(ii)函数
由(i)可知
即,所以,当时取等号;
所以当时,则
若,令
则,
当时,.
则当时,,
故对任意,对恒成立.
练习册系列答案
相关题目