题目内容
【题目】如图,在三棱柱中,,,,为棱上的动点.
(1)若为的中点,求证:平面;
(2)若平面平面ABC,且是否存在点,使二面角的平面角的余弦值为?若存在,求出的值,若不存在,说明理由.
【答案】(1)证明见解析;(2).
【解析】
(1)连交与,连,为中点,结合已知可得,即可证明结论;
(2)根据已知可得平面,以为坐标原点建立空间直角坐标系,由已知确定坐标,假设满足条件的点存在,设,求出平面的法向量坐标,取平面一个法向量为,按照空间向量的面面角公式,建立的方程,求解即可得出结论.
(1)连交与,连,
四边形为平行四边形,为中点,
又为的中点,平面,
平面,平面;
(2)平行四边形为菱形,,
又平面平面ABC,平面平面,
平面,
过点作的平行线,即两两互相垂直,
以为坐标原点,以所在的直线分别为轴建立空间直角坐标系,
,
故
,
假设存在点,使二面角的平面角的余弦值为,
设,
,
平面一个法向量为,
设平面的法向量为,
,即,
令,则,
由,
整理得或,
解得舍去)或,
,
满足条件的点存在,且.
【题目】今年1月至2月由新型冠状病毒引起的肺炎病例陡然增多,为了严控疫情传播,做好重点人群的预防工作,某地区共统计返乡人员人,其中岁及以上的共有人.这人中确诊的有名,其中岁以下的人占.
(1)请将下面的列联表补充完整,并判断是否有%的把握认为是否确诊患新冠肺炎与年龄有关;
确诊患新冠肺炎 | 未确诊患新冠肺炎 | 合计 | |
50岁及以上 | 40 | ||
50岁以下 | |||
合计 | 10 | 100 |
(2)为了研究新型冠状病毒的传染源和传播方式,从名确诊人员中随机抽出人继续进行血清的研究,表示被抽取的人中岁以下的人数,求的分布列以及数学期望.
参考表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
【题目】众所周知,大型网络游戏(下面简称网游)的运行必须依托于网络的基础上,否则会出现频繁掉线的情况,进而影响游戏的销售和推广,某网游经销在甲地区5个位置对两种类型的网络(包括“电信”和“网通”)在相同条件下进行游戏掉线的测试,得到数据如下:
位置 类型 | A | B | C | D | E |
电信 | 4 | 3 | 8 | 6 | 12 |
网通 | 5 | 7 | 9 | 4 | 3 |
(1)如果在测试中掉线次数超过5次,则网络状况为“糟糕”,否则为“良好”,那么在犯错误的概率不超过0.15的前提下,能否说明网络状况与网络的类型有关?
(2)若该游戏经销商要在上述接受测试的电信的5个地区中任选2个作为游戏推广,求A,B两地区至少选到一个的概率.
参考公式:.