题目内容
【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
【答案】(1);(2),;(3).
【解析】试题分析:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数
试题解析:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:
x=0.0075,所以直方图中x的值是0.0075. ------------- 3分
(2)月平均用电量的众数是=230. ------------- 5分
因为(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,
设中位数为a,
由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5
得:a=224,所以月平均用电量的中位数是224. ------------ 8分
(3)月平均用电量为[220,240]的用户有0.0125×20×100=25户,
月平均用电量为[240,260)的用户有0.0075×20×100=15户,
月平均用电量为[260,280)的用户有0. 005×20×100=10户,
月平均用电量为[280,300]的用户有0.0025×20×100=5户, -------------10分
抽取比例==,所以月平均用电量在[220,240)的用户中应抽取25×=5户.-- 12分
【题目】某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取100名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试.测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子停下所需的距离),无酒状态与酒后状态下的实验数据分别列于表1和表2.
表1:
停车距离(米) | |||||
频数 | 26 | 40 | 24 | 8 | 2 |
表2:
平均每毫升血液酒精含量(毫克) | 10 | 30 | 50 | 70 | 90 |
平均停车距离(米) | 30 | 50 | 60 | 70 | 90 |
请根据表1,表2回答以下问题.
(1)根据表1估计驾驶员无酒状态下停车距离的平均数;
(2)根据最小二乘法,由表2的数据计算关于的回归方程.
(3)该测试团队认为:驾驶员酒后驾车的“平均停车距离”大于(1)中无酒状态下的停车距离平均数的3倍,则认定驾驶员是“醉驾”.请根据(2)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?参考公式:
,.
【题目】为了研究“晚上喝绿茶与失眠”有无关系,调查了100名人士,得到下面的列联表:
失眠 | 不失眠 | 合计 | |
晚上喝绿茶 | 16 | 40 | 56 |
晚上不喝绿茶 | 5 | 39 | 44 |
合计 | 21 | 79 | 100 |
由已知数据可以求得:,则根据下面临界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
可以做出的结论是( )
A. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠有关”
B. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠无关”
C. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠有关”
D. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠无关”