题目内容
【题目】已知椭圆的离心率为,以椭圆的一个短轴端点及两个焦点构成的三角形的面积为,圆C方程为.
(1)求椭圆及圆C的方程;
(2)过原点O作直线l与圆C交于A,B两点,若,求直线l的方程.
【答案】(1)椭圆的方程,圆的方程为;(2)或.
【解析】
试题分析:(1)由离心率为可得,结合得,根据以椭圆的一个短轴端点及两个焦点为顶点的三角形面积为可得,从而求的,得到椭圆和圆的方程;(2)设出直线的方程,整理方程组,由判别式求出直线斜率的范围,韦达定理得到坐标的关系,根据向量数量积的坐标表示列出方程,求的斜率.
试题解析:(1)设椭圆的焦距为2c,左、右焦点分别为,由椭圆的离心率为可得,即,所以
以椭圆的一个短轴端点及两个焦点为顶点的三角形的面积为,即,
所以椭圆的方程,圆的方程为
(2)①当直线的斜率不存时,直线方程为,与圆C相切,不符合题意
②当直线的斜率存在时,设直线方程,
由可得,
由条件可得,即
设,,则,
而圆心C的坐标为(2,1)则,
所以,
即
所以解得或
或
【题目】刘老师是一位经验丰富的高三理科班班主任,经长期研究,他发现高中理科班的学生的数学成绩(总分150分)与理综成绩(物理、化学与生物的综合,总分300分)具有较强的线性相关性,以下是刘老师随机选取的八名学生在高考中的数学得分x与理综得分y(如下表):
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数x | 52 | 64 | 87 | 96 | 105 | 123 | 132 | 141 |
理综分数y | 112 | 132 | 177 | 190 | 218 | 239 | 257 | 275 |
参考数据及公式: .
(1)求出y关于x的线性回归方程;
(2)若小汪高考数学110分,请你预测他理综得分约为多少分?(精确到整数位);
(3)小金同学的文科一般,语文与英语一起能稳定在215分左右.如果他的目标是在
高考总分冲击600分,请你帮他估算他的数学与理综大约分别至少需要拿到多少分?(精确到整数位).
【题目】衡州市临枣中学高二某小组随机调查芙蓉社区160个人,以研究这一社区居民在20:00-22:00时间段的休闲方式与性别的关系,得到下面的数据表:
休闲方式 性别 | 看电视 | 看书 | 合计 |
男 | 20 | 100 | 120 |
女 | 20 | 20 | 40 |
合计 | 40 | 120 | 160 |
下面临界值表:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量,求 的分别列和期望;
(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00-22:00时间段的休闲方式与性别有关系”?