题目内容
【题目】2017年天猫五一活动结束后,某地区研究人员为了研究该地区在五一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众中抽取了500人作调查,所得概率分布直方图如图所示:记年龄在, , 对应的小矩形的面积分别是,且.
(1)以频率作为概率,若该地区五一消费超过3000元的有30000人,试估计该地区在五一活动中消费超过3000元且年龄在的人数;
(2)若按照分层抽样,从年龄在的人群中共抽取6人,再从这6人中随机抽取2人作深入调查,求至少有1人的年龄在内的概率.
【答案】(1)15000(人);(2).
【解析】试题分析:
(1)由频率分布直方图可得年龄在的人数为15000人;
(2)利用题意结合古典概型公式可得:至少有1人的年龄在内的概率为 .
试题解析:
(1)设区间的频率为x,则区间内的频率依次为,依题意得
在五一活动中消费超过3000元且年龄在岁之间的人数为:
(人)
(2)若按分层抽样,年龄在分别抽取2人和4人,记年龄在的两
人为A,B,记年龄在的4人为1,2,3,4;随机抽取两人可能情况有:
(A,B),(A,1)(A,2),(A,3),(A,4),(B,1),(B,2),(B,3),(B,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共15种情况,
其中满足条件的有:(A,B),(A,1)(A,2),(A,3),(A,4),(B,1),(B,2),(B,3),(B,4)共9
种故所求概率为: .
【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号 | 第一组 | 第二组 | 第三组 | 第四组 | 第五组 |
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?