题目内容

如图,在Rt△ABC中,, BE平分∠ABC交AC于点E, 点D在AB上,
(1)求证:AC是△BDE的外接圆的切线;
(2)若,求EC的长.
(1)见解析;(2)

试题分析:(1)欲证的外接圆切线,利用“弦切角与同弦所对的圆周角相等”性质,若能证明,则可证结论,方法二:取的中点为,若能证,则结论也成立(自行证明);(2)根据切割线定理(圆幂定理之一),可得,并利用(1)中所证得,利用三角形,可求得.
试题解析:
证明:
因为在Rt△ABC中,, 点D在AB上,
所以DB是的外接圆直径,
又因为BE平分∠ABC交AC于点E,
,
故AC是△BDE的外接圆的切线.             4分
设BD的中点为O,连接OE,
由(1)知则OEAC,从而‖BC,
,
从而AC=9.,得EC=3       .10分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网