题目内容

如图,过抛物线y2=2px(p>0)的顶点作两条互相垂直的弦OA、OB.
(1)设OA的斜率为k,试用k表示点A、B的坐标;
(2)求弦AB中点M的轨迹方程.
(1)∵依题意可知直线OA的斜率存在且不为0
∴设直线OA的方程为y=kx(k≠0)
∴联立方程
y=kx
y2=2px
解得xA=
2p
k2
yA=
2p
k
(4分)
-
1
k
代上式中的k,解方程组
y=-
1
k
x
y2=2px
,解得xB=2pk2,yB=-2pk
∴A(
2p
k2
2p
k
),B(2pk2,-2pk)(8分)
(2)设AB中点M(x,y),则由中点坐标公式,得
x=p(
1
k2
+k2)
y=p(
1
k
-k)
(10分)
消去参数k,得y2=px-2p2;即为M点轨迹的普通方程.(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网