题目内容
13.如图,在等腰梯形ABCD中,AB∥CD,延长AB到点E,使∠BEC=∠CAD.若AC=$\sqrt{2}$,CD=CE=1,则BC=$\frac{\sqrt{2}}{2}$.分析 证明△ACD∽△BCE,可得$\frac{CD}{AC}=\frac{BC}{CE}$,代入数据,即可求出BC.
解答 解:在等腰梯形ABCD中,∠BAD+∠ADC=180°,∠BEC=∠CAD,
∵∠ABC+∠CBE=180°,
∴∠ADC=∠CBE,
∵∠BEC=∠CAD,
∴△ACD∽△BCE,
∴$\frac{CD}{AC}=\frac{BC}{CE}$,
∵AC=$\sqrt{2}$,CD=CE=1,
∴BC=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.
点评 本题考查三角形相似的判定与性质的运用,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
3.(1-x)10的展开式中x3的系数为( )
A. | -120 | B. | 120 | C. | -45 | D. | 45 |
4.已知集合A={0,1,2},集合B={-1,0,1},则集合A∩B=( )
A. | {-1,0,1,2} | B. | {0,1} | C. | {-1,6} | D. | ∅ |
18.设X为随机变量,X~B (n,$\frac{1}{3}$),若随机变量X的数学期望E(X)=2,则P(X=2)等于( )
A. | $\frac{80}{243}$ | B. | $\frac{13}{243}$ | C. | $\frac{4}{243}$ | D. | $\frac{13}{16}$ |
5.设a=logπ3,b=20.3,c=log2$\frac{1}{3}$,则a,b,c的大小关系为( )
A. | a>b>c | B. | c>a>b | C. | b>a>c | D. | a>c>b |
3.若复数z满足$\frac{z}{1-i}$=i(i为虚数单位),则复数z对应点位于( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |