题目内容
【题目】已知f(α)=.
(1)化简f(α);
(2)若f(α)=,且<α<,求cosα-sinα的值;
(3)若α=-,求f(α)的值.
【答案】(1)f(α)=sinα·cosα.(2)cosα-sinα=-. (3) -
【解析】
(1)根据三角函数的诱导公式化简,得,即可得到答案;
(2)由(1)知,再根据同角三角函数的基本关系式,即可求解.
(3)由,代入,利用诱导公式和特殊角的三角函数值,即可求解.
(1)f(α)==sinα·cosα.
(2)由f(α)=sinαcosα=可知
(cosα-sinα)2=cos2α-2sinαcosα+sin2α=1-2sinαcosα=1-2×=.
又∵<α<,∴cosα<sinα,即cosα-sinα<0.
∴cosα-sinα=-.
(3)∵α=-=-6×2π+,
∴f(-)=cos(-)·sin(-)=cos(-6)·sin(-6)
=cos·sin=cos(2π-)·sin(2π-)=cos·
=·(-)=-.
练习册系列答案
相关题目