题目内容

【题目】已知函数f(x)= sinωx+cosωx(ω>0)的图象与直线y=﹣2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是(
A.[kπ+ ,kπ+ ],k∈z
B.[kπ﹣ ,kπ+ ],k∈z
C.[2kπ+ ,2kπ+ ],k∈z
D.[2kπ﹣ ,2kπ+ ],k∈z

【答案】A
【解析】解:f(x)=2( sinωx+ cosωx)=2sin(ωx+ ),
依题意知函数的周期为T= =π,
∴ω=2,
∴f(x)=2sin(2x+ ),
由2kπ+ ≤2x+ ≤2kπ+ ,得kπ+ ≤x≤kπ+ ,k∈Z,
∴f(x)的单调递减区间是[kπ+ ,kπ+ ](k∈Z),
故选A.
【考点精析】关于本题考查的两角和与差的正弦公式和正弦函数的单调性,需要了解两角和与差的正弦公式:;正弦函数的单调性:在上是增函数;在上是减函数才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网