题目内容
【题目】已知数列为等差数列,,.
(1) 求数列的通项公式;
(2)求数列的前n项和.
【答案】(1);(2).
【解析】试题分析:利用等差数列通项公式列出方程组,求出首项和公差,由此能求出数列的
通项公式;(2)由(1)可得,利用错位相减法及等比数列前项和公式能求出数列的前n项和.
试题解析: (1)设数列的公差为,依题意得方程组解得.
所以的通项公式为.
(2)由(1)可得,
-得
所以.
【 方法点睛】本题主要考查等差数列的通项公式、等比数列的求和公式以及错位相减法求数列的前 项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“”与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.
练习册系列答案
相关题目