题目内容
已知等差数列{an}的前n项和为Sn,S7=49,a4和a8的等差中项为2.
(1)求an及Sn;
(2)证明:当n≥2时,有
.
(1)求an及Sn;
(2)证明:当n≥2时,有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129083898.png)
(1)
; (2)见解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129115756.png)
试题分析:(1) 设等差数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129130481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129130321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129161460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129161348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129177388.png)
(2)放缩法裂项求和并证不等式:思路一:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441291931016.png)
思路二:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441292081825.png)
试题解析:
解:(1)解法一:设等差数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129130481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129130321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129255864.png)
所以有,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441292861148.png)
解得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129333579.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129115756.png)
解法二:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129364820.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129380765.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129395753.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129427633.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129115756.png)
(2)证明:方法一:由(Ⅰ)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129458760.png)
①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129489414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129505855.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129520191.png)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129536422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129551659.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129567875.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441295832151.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441295981991.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129614728.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129629524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129645399.png)
方法二:由(Ⅰ)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129458760.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129676435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441296921815.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441297232838.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441297392738.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129754865.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129770868.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044129645399.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目